70 research outputs found

    An accurate coarse-grained model for chitosan polysaccharides in aqueous solution

    No full text
    Computational models can provide detailed information about molecular conformations and interactions in solution, which is currently inaccessible by other means in many cases. Here we describe an efficient and precise coarse-grained model for long polysaccharides in aqueous solution at different physico-chemical conditions such as pH and ionic strength. The Model is carefully constructed based on all-atom simulations of small saccharides and metadynamics sampling of the dihedral angles in the glycosidic links, which represent the most flexible degrees of freedom of the polysaccharides. The model is validated against experimental data for Chitosan molecules in solution with various degree of deacetylation, and is shown to closely reproduce the available experimental data. For long polymers, subtle differences of the free energy maps of the glycosidic links are found to significantly affect the measurable polymer properties. Therefore, for titratable monomers the free energy maps of the corresponding links are updated according to the current charge of the monomers. We then characterize the microscopic and mesoscopic structural properties of large chitosan polysaccharides in solution for a wide range of solvent pH and ionic strength, and investigate the effect of polymer length and degree and pattern of deacetylation on the polymer properties

    Automated access to well-defined ionic oligosaccharides

    Get PDF
    Ionic polysaccharides are part of many biological events, but lack structural characterisation due to challenging purifications and complex synthesis. Four monosaccharides bearing modifications not found in nature are used for the automated synthesis of a collection of ionic oligosaccharides. Structural analysis reveals how the charge pattern affects glycan conformation

    Budding and fission of nanovesicles induced by membrane adsorption of small solutes

    Get PDF
    Membrane budding and fission are essential cellular processes that produce new membrane compartments during cell and organelle division, for intracellular vesicle trafficking as well as during endo- and exocytosis. Such morphological transformations have also been observed for giant lipid vesicles with a size of many micrometers. Here, we report budding and fission processes of lipid nanovesicles with a size below 50 nm. We use coarse-grained molecular dynamics simulations, by which we can visualize the morphological transformations of individual vesicles. The budding and fission processes are induced by low concentrations of small solutes that absorb onto the outer leaflets of the vesicle membranes. In addition to the solute concentration, we identify the solvent conditions as a second key parameter for these processes. For good solvent conditions, the budding of a nanovesicle can be controlled by reducing the vesicle volume for constant solute concentration or by increasing the solute concentration for constant vesicle volume. After the budding process is completed, the budded vesicle consists of two membrane subcompartments which are connected by a closed membrane neck. The budding process is reversible as we demonstrate explicitly by reopening the closed neck. For poor solvent conditions, on the other hand, we observe two unexpected morphological transformations of nanovesicles. Close to the binodal line, at which the aqueous solution undergoes phase separation, the vesicle exhibits recurrent shape changes with closed and open membrane necks, reminiscent of flickering fusion pores (kiss-and-run) as observed for synaptic vesicles. As we approach the binodal line even closer, the recurrent shape changes are truncated by the fission of the membrane neck which leads to the division of the nanovesicle into two daughter vesicles. In this way, our simulations reveal a nanoscale mechanism for the budding and fission of nanovesicles, a mechanism that arises from the interplay between membrane elasticity and solute-mediated membrane adhesion

    Modulating membrane shape and mechanics of minimal cells by light: area increase, softening and interleaflet coupling of membrane models doped with azobenzene-lipid photoswitches

    Get PDF
    Light can effectively interrogate biological systems providing control over complex cellular processes. Particularly advantageous features of photo-induced processes are reversibility, physiological compatibility, and spatiotemporal precision. Understanding the underlying biophysics of light-triggered changes in bio-systems is crucial for cell viability and optimizing clinical applications of photo-induced processes in biotechnology, optogenetics and photopharmacology. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), we provide a holistic picture of light-triggered changes in membrane morphology, mechanics and dynamics. We combine microscopy of giant vesicles as minimal cell models, Langmuir monolayers, and molecular dynamics simulations. We employ giant vesicle elelctrodeformation as a facile and accurate approach to quantify the magnitude, reversibility and kinetics of light-induced area expansion/shrinkage as a result of azo-PC photoisomerization and content. Area increase as high as ~25% and a 10-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization. These results are in excellent agreement with simulations data and monolayers. Simulations also show that trans-to-cis isomerization of azo-PC decreases the membrane leaflet coupling. We demonstrate that light can be used to finely manipulate the shape and mechanics of photolipid-doped minimal cell models and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.Competing Interest StatementThe authors have declared no competing interest

    Systematic structural characterization of chitooligosaccharides enabled by Automated Glycan Assembly

    Get PDF
    Chitin, a polymer composed of β(1-4)-linked N-acetyl-glucosamine monomers, and its partially deacetylated analogue chitosan, are abundant biopolymers with outstanding mechanical as well as elastic properties. Their degradation products, chitooligosaccharides (COS), can trigger the innate immune response in humans and plants. Both material and biological properties are dependent on polymer length, acetylation, as well as the pH. Without well-defined samples, a complete molecular description of these factors is still missing. Automated Glycan Assembly (AGA) enabled rapid access to synthetic well-defined COS. Chitin-cellulose hybrid oligomers were prepared as important tools for a systematic structural analysis. Intramolecular interactions, identified by molecular dynamics simulations and NMR analysis, underscore the importance of the chitosan amino group for the stabilization of specific geometries

    Deoxyfluorination tunes the aggregation of cellulose and chitin oligosaccharides and highlights the role of specific hydroxyl groups in the crystallization process

    Get PDF
    Cellulose and chitin are abundant structural polysaccharides exploited by nature in a large number of applications thanks to their crystallinity. Chemical modifications are commonly employed to tune polysaccharide physical and mechanical properties, but generate heterogeneous mixtures. Thus, the effect of such modifications is not well understood at the molecular level. In this work, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of well-defined cellulose and chitin oligomers. While deoxyfluorination increased solubility in water and lowered the crystallinity of cellulose oligomers, chitin was much less affected by the modification. The OH/F substitution also highlighted the role of specific hydroxyl groups in the crystallization process. This work provides guidelines for the design of cellulose- and chitin-based materials. A similar approach can be imagined to prepare cellulose and chitin analogues capable of withstanding enzymatic degradation

    Systematic Structural Characterization of Chitooligosaccharides Enabled by Automated Glycan Assembly

    Get PDF
    Chitin, a polymer composed of beta(1-4)-linked N-acetyl-glucosamine monomers, and its partially deacetylated analogue chitosan, are abundant biopolymers with outstanding mechanical as well as elastic properties. Their degradation products, chitooligosaccharides (COS), can trigger the innate immune response in humans and plants. Both material and biological properties are dependent on polymer length, acetylation, as well as the pH. Without well-defined samples, a complete molecular description of these factors is still missing. Automated glycan assembly (AGA) enabled rapid access to synthetic well-defined COS. Chitin-cellulose hybrid oligomers were prepared as important tools for a systematic structural analysis. Intramolecular interactions, identified by molecular dynamics simulations and NMR analysis, underscore the importance of the chitosan amino group for the stabilization of specific geometries

    " EFEITOS DO TREINAMENTO FÍSICO AERÓBICO SOBRE A REATIVIDADE VASCULAR EM ANÉIS DE AORTA DE RATAS OVARIECTOMIZADAS E INFARTADAS"

    Get PDF
    A principal característica da mulher no período pós menopausa é a deficiência dos hormônios ovarianos. Sabe-se que nesse período a mulher se encontra mais susceptível a incidência de doenças cardiovasculares e tem sido observado uma incidência elevada de casos de infarto agudo do miocárdio (IAM). Visando reduzir as taxas de hospitalização e mortalidade das mulheres, o treinamento aeróbico pode ser uma estratégia terapêutica utilizada para reduzir os efeitos deletérios da doença e melhorar a qualidade de vida. Diante disso o objetivo do presente estudo foi avaliar os efeitos do treinamento físico sobre a reatividade vascular em anéis de aorta de ratas ovariectomizadas e infartadas, sobre a perspectiva do sistema antioxidante. Os animais foram submetidos a ovariectomia (OVX) e 7 dias depois foi realizado a indução do IAM ou cirurgia fictícia e em seguida os animais foram divididos em grupos sedentários ou treinados (EF), que iniciaram o treino 15 dias após o IAM e realizaram os treinos por 8 semanas, resultando nos grupos: Controle, OVX+IM, OVX+IMsed, OVX+SHAM e OVX+SHAMef. Ao final do treinamento físico, os animais foram sacrificados e suas aortas foram utilizadas para análise de reatividade vascular, investigação da expressão protéica das enzimas antioxidantes e gp91phox , além das análises da presença do ânion superóxido pela técnica de DHE .Foi demonstrado que o infarto do miocárdio promoveu aumento da contratilidade do vaso e prejuízo no relaxamento. Já o grupo infartado treinado obteve um índice de relaxamento maior que os infartados sedentários, além de um índice menor de contratilidade. Além disso a expressão protéica da gp91phox e o índice de ERO avaliadas pela técnica de DHE, foi aumentada no grupo OVX+IMsed comparado ao OVX+SHAMsed. O resultado de ambos os experimentos foram reduzidos no grupo OVX+IMef comparado ao OVX+IMsed.O presente estudo destaca a importância do treinamento físico como uso terapêutico e com fortes evidências de ser um fator contribuinte no auxílio em proporcionar melhor qualidade de vida pós infarto e menopausa

    Deoxyfluorination tunes the aggregation of cellulose and chitin oligosaccharides and highlights the role of specific hydroxyl groups in the crystallization process

    Get PDF
    Cellulose and chitin are abundant structural polysaccharides exploited by nature in a large number of applications thanks to their crystallinity. Chemical modifications are commonly employed to tune polysaccharide physical and mechanical properties, but generate heterogeneous mixtures. Thus, the effect of such modifications is not well understood at the molecular level. In this work, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of well-defined cellulose and chitin oligomers. While deoxyfluorination increased solubility in water and lowered the crystallinity of cellulose oligomers, chitin was much less affected by the modification. The OH/F substitution also highlighted the role of specific hydroxyl groups in the crystallization process. This work provides guidelines for the design of cellulose- and chitin-based materials. A similar approach can be imagined to prepare cellulose and chitin analogues capable of withstanding enzymatic degradation

    Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition

    Get PDF
    Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanism of microtubule growth from the view of hydrolysis effects. Besides, the microtubule growth involves the closure of a curved sheet at its growing end. The curvature conversion also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical-chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. Firstly, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure, and the minimum conformational cap length that can stabilize the growth is demonstrated to be two dimers. Then, we show that the conformational cap can function independently of the GTP cap, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth.Comment: 23 pages, 7 figures. 2 supporting movies have not been uploaded due to the file type restriction
    corecore