338 research outputs found

    Individual Entanglements in a Simulated Polymer Melt

    Full text link
    We examine entanglements using monomer contacts between pairs of chains in a Brownian-dynamics simulation of a polymer melt. A map of contact positions with respect to the contacting monomer numbers (i,j) shows clustering in small regions of (i,j) which persists in time, as expected for entanglements. Using the ``space''-time correlation function of the aforementioned contacts, we show that a pair of entangled chains exhibits a qualitatively different behavior than a pair of distant chains when brought together. Quantitatively, about 50% of the contacts between entangled chains are persistent contacts not present in independently moving chains. In addition, we account for several observed scaling properties of the contact correlation function.Comment: latex, 12 pages, 7 figures, postscript file available at http://arnold.uchicago.edu/~ebn

    Self-diffusion in binary blends of cyclic and linear polymers

    Full text link
    A lattice model is used to estimate the self-diffusivity of entangled cyclic and linear polymers in blends of varying compositions. To interpret simulation results, we suggest a minimal model based on the physical idea that constraints imposed on a cyclic polymer by infiltrating linear chains have to be released, before it can diffuse beyond a radius of gyration. Both, the simulation, and recently reported experimental data on entangled DNA solutions support the simple model over a wide range of blend compositions, concentrations, and molecular weights.Comment: 10 pages, 2 figure

    Tube Models for Rubber-Elastic Systems

    Full text link
    In the first part of the paper we show that the constraining potentials introduced to mimic entanglement effects in Edwards' tube model and Flory's constrained junction model are diagonal in the generalized Rouse modes of the corresponding phantom network. As a consequence, both models can formally be solved exactly for arbitrary connectivity using the recently introduced constrained mode model. In the second part, we solve a double tube model for the confinement of long paths in polymer networks which is partially due to crosslinking and partially due to entanglements. Our model describes a non-trivial crossover between the Warner-Edwards and the Heinrich-Straube tube models. We present results for the macroscopic elastic properties as well as for the microscopic deformations including structure factors.Comment: 15 pages, 8 figures, Macromolecules in pres

    Equilibrium swelling and universal ratios in dilute polymer solutions: Exact Brownian dynamics simulations for a delta function excluded volume potential

    Full text link
    A narrow Gaussian excluded volume potential, which tends to a delta-function repulsive potential in the limit of a width parameter d* going to zero, has been used to examine the universal consequences of excluded volume interactions on the equilibrium and linear viscoelastic properties of dilute polymer solutions. Brownian dynamics simulations data, acquired for chains of finite length, has been extrapolated to the limit of infinite chain length to obtain model independent predictions. The success of the method in predicting well known aspects of static solution properties suggests that it can be used as a systematic means by which the influence of solvent quality on both equilibrium and non-equilibrium properties can be studied.Comment: Revised version submitted to Physical Review Letters. 4 pages, 2 figures (revised with additional data

    The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries

    Get PDF
    The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.NS
    corecore