346 research outputs found

    Using Ginkgo’s memory accessor for improving the accuracy of memory-bound low precision BLAS

    Get PDF
    The roofline model not only provides a powerful tool to relate an application\u27s performance with the specific constraints imposed by the target hardware but also offers a graphic representation of the balance between memory access cost and compute throughput. In this work, we present a strategy to break up the tight coupling between the precision format used for arithmetic operations and the storage format employed for memory operations. (At a high level, this idea is equivalent to compressing/decompressing the data in registers before/after invoking store/load memory operations.) In practice, we demonstrate that a “memory accessor” that hides the data compression behind the memory access, can virtually push the bandwidth-induced roofline, yielding higher performance for memory-bound applications using high precision arithmetic that can handle the numerical effects associated with lossy compression. We also demonstrate that memory-bound applications operating on low precision data can increase the accuracy by relying on the memory accessor to perform all arithmetic operations in high precision. In particular, we demonstrate that memory-bound BLAS operations (including the sparse matrix-vector product) can be re-engineered with the memory accessor and that the resulting accessor-enabled BLAS routines achieve lower rounding errors while delivering the same performance as the fast low precision BLAS

    Single hole transistor in a p-Si/SiGe quantum well

    Full text link
    A single hole transistor is patterned in a p-Si/SiGe quantum well by applying voltages to nanostructured top gate electrodes. Gating is achieved by oxidizing the etched semiconductor surface and the mesa walls before evaporation of the top gates. Pronounced Coulomb blockade effects are observed at small coupling of the transistor island to source and drain.Comment: 3 pages, 3 figure

    In-plane anisotropy of electrical transport in Y0.85_{0.85}Tb0.15_{0.15}Ba2_2Cu3_3O7x_{7-x} films

    Full text link
    We fabricate high-quality c-axis oriented epitaxial YBa2_2Cu3_3O7x_{7-x} films with 15% of yttrium atoms replaced by terbium (YTBCO) and study their electrical properties. The Tb substitution reduces the charge carrier density resulting in increased resistivity and decreased critical current density compared to the pure YBa2_2Cu3_3O7x_{7-x} films. The electrical properties of the YTBCO films show an in-plane anisotropy in both the superconducting and normal state providing evidence for the twin-free film. Unexpectedly, the resistive transition of the bridges also demonstrates the in-plane anisotropy that can be explained within the framework of Tinkham's model of the resistive transition and the Berezinskii-Kosterlitz-Thouless (BKT) model depending on the sample parameters. We consider YTBCO films to be a promising platform for both the fundamental research on the BKT transition in the cuprate superconductors and for the fabrication of devices with high kinetic inductance

    Analysis of the resistance in p-SiGe over a wide temperature range

    Full text link
    The temperature dependence of a system exhibiting a `metal-insulator transition in two dimensions at zero magnetic field' (MIT) is studied up to 90K. Using a classical scattering model we are able to simulate the non-monotonic temperature dependence of the resistivity in the metallic high density regime. We show that the temperature dependence arises from a complex interplay of metallic and insulating contributions contained in the calculation of the scattering rate 1/\td(E,T), each dominating in a limited temperature range.Comment: 4 pages with 5 figure

    Coherent ultrafast spin-dynamics probed in three dimensional topological insulators

    Get PDF
    Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. The directionality of spin and momentum, as well as control with light has been demonstrated. Here we demonstrate a coherent femtosecond control of spin-polarization for states in the valence band at around the Dirac cone.Comment: 14 pages, 4 figure
    corecore