11 research outputs found

    Ultrafaint Dwarf Galaxy Candidates in the M81 Group: Signatures of Group Accretion

    Get PDF
    The faint and ultrafaint dwarf galaxies in the Local Group form the observational bedrock upon which our understanding of small-scale cosmology rests. In order to understand whether this insight generalizes, it is imperative to use resolved-star techniques to discover similarly faint satellites in nearby galaxy groups. We describe our search for ultrafaint galaxies in the M81 group using deep ground-based resolved-star data sets from Subaru's Hyper Suprime-Cam. We present one new ultrafaint dwarf galaxy in the M81 group and identify five additional extremely low surface brightness candidate ultrafaint dwarfs that reach deep into the ultrafaint regime to MV∌−6M_V \sim -6 (similar to current limits for Andromeda satellites). These candidates' luminosities and sizes are similar to known Local Group dwarf galaxies Tucana B, Canes Venatici I, Hercules, and Bo\"otes I. Most of these candidates are likely to be real, based on tests of our techniques on blank fields. Intriguingly, all of these candidates are spatially clustered around NGC 3077, which is itself an M81 group satellite in an advanced state of tidal disruption. This is somewhat surprising, as M81 itself and its largest satellite M82 are both substantially more massive than NGC 3077 and by virtue of their greater masses, would have been expected to host as many or more ultrafaint candidates. These results lend considerable support to the idea that satellites of satellites are an important contribution to the growth of satellite populations around Milky Way-mass galaxies.Comment: The Astrophysical Journal Letters; in press. 11 pages, 4 figures, 1 tabl

    Improving Undergraduate Astronomy Students' Skills with Research Literature via Accessible Summaries: A Case Study with Astrobites-based Lesson Plans

    Full text link
    Undergraduate physics and astronomy students are expected to engage with scientific literature as they begin their research careers, but reading comprehension skills are rarely explicitly taught in major courses. We seek to determine the efficacy of lesson plans designed to improve undergraduate astronomy (or related) majors' perceived ability to engage with research literature by using accessible summaries of current research written by experts in the field. During the 2022-2023 academic year, twelve faculty members incorporated lesson plans using accessible summaries from Astrobites into their undergraduate astronomy major courses, surveyed their students before and after the activities, and participated in follow-up interviews with our research team. Quantitative and qualitative survey data clearly show that students' perceptions of their abilities with jargon, identifying main takeaways of a paper, conceptual understanding of physics and astronomy, and communicating scientific results all improved with use of the tested lesson plans. Additionally, students show evidence of increased confidence of their abilities within astronomy after exposure to these lessons, and instructors valued a ready-to-use resource to incorporate reading comprehension in their pedagogy. This case study with Astrobites-based lesson plans suggests that incorporating current research in the undergraduate classroom through accessible literature summaries may increase students' confidence and ability to engage with research literature, as well as their preparation for participation in research and applied careers.Comment: Submitted to PRPE

    COOL-LAMPS III: Discovery of a 25".9 Separation Quasar Lensed by a Merging Galaxy Cluster

    Get PDF
    In the third paper from the COOL-LAMPS Collaboration, we report the discovery of COOL J0542-2125, a gravitationally lensed quasar at z=1.84z=1.84, observed as three images due to an intervening massive galaxy cluster at z=0.61z=0.61. The lensed quasar images were identified in a search for lens systems in recent public optical imaging data and have separations on the sky up to 25".9, wider than any previously known lensed quasar. The galaxy cluster acting as a strong lens appears to be in the process of merging, with two sub-clusters separated by ∌1\sim 1 Mpc in the plane of the sky, and their central galaxies showing a radial velocity difference of ∌1000\sim 1000 km/s. Both cluster cores show strongly lensed images of an assortment of background sources, as does the region between them. A preliminary strong lens model implies masses of $M(<250\ \rm{kpc}) = 1.79^{+0.16} _{-0.01} \times 10^{14} M_{\odot}and and M(<250\ \rm{kpc}) = 1.48^{+0.04}_{-0.10} \times 10^{14} M_{\odot}$ for the East and West sub-clusters, respectively. This line of sight is also coincident with a ROSAT ALL-sky Survey source, centered between the two confirmed cluster halos reminiscent of other major cluster-scale mergers.Comment: 13 pages, 6 figures. Submitted to Ap

    COOL-LAMPS. VI. Lens Model and New Constraints on the Properties of COOL J1241+2219, a Bright z = 5 Lyman Break Galaxy and its z = 1 Cluster Lens

    Get PDF
    We present a strong lensing analysis of COOL J1241+2219, the brightest known gravitationally lensed galaxy at z ≄ 5, based on new multiband Hubble Space Telescope (HST) imaging data. The lensed galaxy has a redshift of z = 5.043, placing it shortly after the end of the “Epoch of Reionization,” and an AB magnitude z AB = 20.47 mag (Khullar et al.). As such, it serves as a touchstone for future research of that epoch. The high spatial resolution of HST reveals internal structure in the giant arc, from which we identify 15 constraints and construct a robust lens model. We use the lens model to extract the cluster mass and lensing magnification. We find that the mass enclosed within the Einstein radius of the z = 1.001 cluster lens is M(<5.″77)=1.079−0.007+0.023×1013M☉ , significantly lower than other known strong lensing clusters at its redshift. The average magnification of the giant arc is ă€ˆÎŒ arc〉 = 76−20+40 , a factor of 2.4−0.7+1.4 greater than previously estimated from ground-based data; the flux-weighted average magnification is ă€ˆÎŒ arc〉 = 92−31+37 . We update the current measurements of the stellar mass and star formation rate (SFR) of the source for the revised magnification to log(M⋆/M⊙)= 9.7 ± 0.3 and SFR = 10.3−4.4+7.0 M ⊙ yr−1, respectively. The powerful lensing magnification acting upon COOL J1241+2219 resolves the source and enables future studies of the properties of its star formation on a clump-by-clump basis. The lensing analysis presented here will support upcoming multiwavelength characterization with HST and JWST data of the stellar mass assembly and physical properties of this high-redshift lensed galaxy

    COOL-LAMPS VI: Lens model and New Constraints on the Properties of COOL J1241+2219, a Bright z = 5 Lyman Break Galaxy and its z = 1 Cluster Lens

    Full text link
    We present a strong lensing analysis of COOL J1241+2219, the brightest known gravitationally lensed galaxy at z≄5z \geq 5, based on new multi-band Hubble Space Telescope (HST) imaging data. The lensed galaxy has a redshift of z=5.043, placing it shortly after the end of the Epoch of Reionization, and an AB magnitude z_AB=20.47 mag (Khullar et al. 2021). As such, it serves as a touchstone for future research of that epoch. The high spatial resolution of HST reveals internal structure in the giant arc, from which we identify 15 constraints and construct a robust lens model. We use the lens model to extract cluster mass and lensing magnification. We find that the mass enclosed within the Einstein radius of the z=1.001 cluster lens is M(<5.77'')=1.079−0.007+0.0231.079^{+0.023}_{-0.007}, significantly lower than other known strong lensing clusters at its redshift. The average magnification of the giant arc is =76−20+40=76^{+40}_{-20}, a factor of 2.4−0.7+1.42.4^{+1.4}_{-0.7} greater than previously estimated from ground-based data; the flux-weighted average magnification is =92−31+37=92^{+37}_{-31} We update the current measurements of the stellar mass and star formation rate (SFR) of the source for the revised magnification, log⁥(M⋆/M⊙)=9.7±0.3\log(M_\star/M_{\odot})=9.7\pm0.3 and SFR=10.3−4.4+7.0{\rm SFR} = 10.3^{+7.0}_{-4.4} M⊙ M_{\odot} yr−1^{-1}. The powerful lensing magnification acting upon COOL J1241+2219 resolves the source and enables future studies of the properties of its star formation on a clump-by-clump basis. The lensing analysis presented here will support upcoming multiwavelength characterization with HST and JWST data of the stellar mass assembly and physical properties of this high-redshift lensed galaxy.Comment: Submitted to Ap

    COOL-LAMPS. IV. A Sample of Bright Strongly Lensed Galaxies at 3 < z < 4

    Get PDF
    We report the discovery of five bright, strong gravitationally lensed galaxies at 3 < z < 4: COOL J0101+2055 (z = 3.459), COOL J0104−0757 (z = 3.480), COOL J0145+1018 (z = 3.310), COOL J0516−2208 (z = 3.549), and COOL J1356+0339 (z = 3.753). These galaxies have magnitudes of rAB, zAB < 21.81 mag and are lensed by galaxy clusters at 0.26 < z < 1. This sample nearly doubles the number of known bright lensed galaxies with extended arcs at 3 < z < 4. We characterize the lensed galaxies using ground-based grz/giy imaging and optical spectroscopy. We report model-based magnitudes and derive stellar masses, dust content, and star formation rates via stellar population synthesis modeling. Building lens models based on ground-based imaging, we estimate source magnifications ranging from ∌29 to ∌180. Combining these analyses, we derive demagnified stellar masses in the range log10(M∗/M⊙)∌9.69−10.75{\mathrm{log}}_{10}({M}_{* }/{M}_{\odot })\sim 9.69-10.75 and star formation rates in the youngest age bin in the range log10(SFR/(M⊙ yr−1))∌0.39−1.46{\mathrm{log}}_{10}(\mathrm{SFR}/({M}_{\odot }\,{\mathrm{yr}}^{-1}))\sim 0.39-1.46, placing the sample galaxies on the massive end of the star-forming main sequence in this redshift interval. In addition, three of the five galaxies have strong Lyα emissions, offering unique opportunities to study Lyα emitters at high redshift in future work

    COOL-LAMPS. VII. Quantifying Strong-lens Scaling Relations with 177 Cluster-scale Gravitational Lenses in DECaLS

    Full text link
    We compute parametric measurements of the Einstein-radius-enclosed total mass for 177 cluster-scale strong gravitational lenses identified by the ChicagO Optically-selected Lenses Located At the Margins of Public Surveys (COOL-LAMPS) collaboration with lens redshifts ranging from 0.2âȘ…zâȘ…1.00.2 \lessapprox z \lessapprox 1.0 using only two measured parameters in each lensing system: the Einstein radius, and the brightest-cluster-galaxy (BCG) redshift. We then constrain the Einstein-radius-enclosed luminosity and stellar mass by fitting parametric spectral energy distributions (SEDs) with aperture photometry from the Dark Energy Camera Legacy Survey (DECaLS) in the gg, rr, and zz-band Dark Energy Camera (DECam) filters. We find that the BCG redshift, enclosed total mass, and enclosed luminosity are strongly correlated and well described by a planar relationship in 3D space. We also find that the enclosed total mass and stellar mass are correlated with a logarithmic slope of 0.443±0.0350.443\pm0.035, and the enclosed total mass and stellar-to-total mass fraction are correlated with a logarithmic slope of −0.563±0.035-0.563\pm0.035. The correlations described here can be used to validate strong lensing candidates in upcoming imaging surveys -- such as Rubin/Legacy Survey of Space and Time (LSST) -- in which an algorithmic treatment of lensing systems will be needed due to the sheer volume of data these surveys will produce.Comment: 17 pages, 5 figures, 2 tables. Submitted to The Astrophysical Journal. v3: updated authors, formatting, grammar, and reference
    corecore