We compute parametric measurements of the Einstein-radius-enclosed total mass
for 177 cluster-scale strong gravitational lenses identified by the ChicagO
Optically-selected Lenses Located At the Margins of Public Surveys (COOL-LAMPS)
collaboration with lens redshifts ranging from 0.2⪅z⪅1.0 using only two measured parameters in each lensing system: the Einstein
radius, and the brightest-cluster-galaxy (BCG) redshift. We then constrain the
Einstein-radius-enclosed luminosity and stellar mass by fitting parametric
spectral energy distributions (SEDs) with aperture photometry from the Dark
Energy Camera Legacy Survey (DECaLS) in the g, r, and z-band Dark Energy
Camera (DECam) filters. We find that the BCG redshift, enclosed total mass, and
enclosed luminosity are strongly correlated and well described by a planar
relationship in 3D space. We also find that the enclosed total mass and stellar
mass are correlated with a logarithmic slope of 0.443±0.035, and the
enclosed total mass and stellar-to-total mass fraction are correlated with a
logarithmic slope of −0.563±0.035. The correlations described here can be
used to validate strong lensing candidates in upcoming imaging surveys -- such
as Rubin/Legacy Survey of Space and Time (LSST) -- in which an algorithmic
treatment of lensing systems will be needed due to the sheer volume of data
these surveys will produce.Comment: 17 pages, 5 figures, 2 tables. Submitted to The Astrophysical
Journal. v3: updated authors, formatting, grammar, and reference