3,977 research outputs found

    A quasi-linear control theory analysis of timesharing skills

    Get PDF
    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation

    Further observations on the relationship of EMG and muscle force

    Get PDF
    Human skeletal muscle may be regarded as an electro-mechanical transducer. Its physiological input is a neural signal originating at the alpha motoneurons in the spinal cord and its output is force and muscle contraction, these both being dependent on the external load. Some experimental data taken during voluntary efforts around the ankle joint and by direct electrical stimulation of the nerve are described. Some of these experiments are simulated by an analog model, the input of which is recorded physiological soleus muscle EMG. The output is simulated foot torque. Limitations of a linear model and effect of some nonlinearities are discussed

    Computational problems in autoregressive moving average (ARMA) models

    Get PDF
    The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models

    A stochastic model of the electromyogram

    Get PDF
    The quantitative regularities of interference pattern formation by motor unit action potentials is investigated. The parameters of a single motor unit and how they relate to the Fourier transform analysis of an EMG are considered. The Fourier transform of the simulated electromyogram is compared with the Fourier transform of the actual EMG recorded from various human muscles using surface electrodes

    Probing the Region of Massless Quarks in Quenched Lattice QCD using Wilson Fermions

    Full text link
    We study the spectrum of H(m)=γ5W(−m)H(m)=\gamma_5 W(-m) with W(m)W(m) being the Wilson-Dirac operator on the lattice with bare mass equal to mm. The background gauge fields are generated using the SU(3) Wilson action at β=5.7\beta=5.7 on an 83×168^3\times 16 lattice. We find evidence that the spectrum of H(m)H(m) is gapless for 1.02<m<2.01.02 < m < 2.0, implying that the physical quark is massless in this whole region.Comment: 22 pages, LaTeX file, uses elsart.sty, includes 11 figures A typographical error in one reference has been fixe

    Color confinement and dual superconductivity in full QCD

    Get PDF
    We report on evidence that confinement is related to dual superconductivity of the vacuum in full QCD, as in quenched QCD. The vacuum is a dual superconductor in the confining phase, whilst the U(1) magnetic symmetry is realized a la Wigner in the deconfined phase.Comment: 4 pages, 4 eps figure

    Determination of Inter-Phase Line Tension in Langmuir Films

    Get PDF
    A Langmuir film is a molecularly thin film on the surface of a fluid; we study the evolution of a Langmuir film with two co-existing fluid phases driven by an inter-phase line tension and damped by the viscous drag of the underlying subfluid. Experimentally, we study an 8CB Langmuir film via digitally-imaged Brewster Angle Microscopy (BAM) in a four-roll mill setup which applies a transient strain and images the response. When a compact domain is stretched by the imposed strain, it first assumes a bola shape with two tear-drop shaped reservoirs connected by a thin tether which then slowly relaxes to a circular domain which minimizes the interfacial energy of the system. We process the digital images of the experiment to extract the domain shapes. We then use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions first verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%. We find line tensions in the range of 200-600 pN; we hypothesize that this variation is due to differences in the layer depths of the 8CB fluid phases.Comment: See (http://www.math.hmc.edu/~ajb/bola/) for related movie

    Structure preserving schemes for mean-field equations of collective behavior

    Full text link
    In this paper we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang-Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.Comment: Proceedings of the XVI International Conference on Hyperbolic Problem
    • …
    corecore