323 research outputs found

    Some cyclic organosilicon compounds and derivatives

    Get PDF

    An Incremental Tensor Train Decomposition Algorithm

    Full text link
    We present a new algorithm for incrementally updating the tensor-train decomposition of a stream of tensor data. This new algorithm, called the tensor-train incremental core expansion (TT-ICE) improves upon the current state-of-the-art algorithms for compressing in tensor-train format by developing a new adaptive approach that incurs significantly slower rank growth and guarantees compression accuracy. This capability is achieved by limiting the number of new vectors appended to the TT-cores of an existing accumulation tensor after each data increment. These vectors represent directions orthogonal to the span of existing cores and are limited to those needed to represent a newly arrived tensor to a target accuracy. We provide two versions of the algorithm: TT-ICE and TT-ICE accelerated with heuristics (TT-ICE∗^*). We provide a proof of correctness for TT-ICE and empirically demonstrate the performance of the algorithms in compressing large-scale video and scientific simulation datasets. Compared to existing approaches that also use rank adaptation, TT-ICE∗^* achieves 57×\times higher compression and up to 95% reduction in computational time.Comment: 22 pages, 7 figures, for the python code of TT-ICE and TT-ICE∗^* algorithms see https://github.com/dorukaks/TT-IC

    Spatio-temporal patterns and characteristics of swine shipments in the U.S. based on Interstate Certificates of Veterinary Inspection

    Get PDF
    Domestic swine production in the United States is a critical economic and food security industry, yet there is currently no large-scale quantitative assessment of swine shipments available to support risk assessments. In this study, we provide a national-level characterization of the swine industry by quantifying the demographic (i.e. age, sex) patterns, spatio-temporal patterns, and the production diversity within swine shipments. We characterize annual networks of swine shipments using a 30% stratified sample of Interstate Certificates of Veterinary Inspection (ICVI), which are required for the interstate movement of agricultural animals. We used ICVIs in 2010 and 2011 from eight states that represent 36% of swine operations and 63% of the U.S. swine industry. Our analyses reflect an integrated and spatially structured industry with high levels of spatial heterogeneity. Most shipments carried young swine for feeding or breeding purposes and carried a median of 330 head (range: 1–6,500). Geographically, most shipments went to and were shipped from Iowa, Minnesota, and Nebraska. This work, therefore, suggests that although the swine industry is variable in terms of its size and type of swine, counties in states historically known for breeding and feeding operations are consistently more central to the shipment network

    Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host

    Get PDF
    Within-host interactions among coinfecting parasites are common and have important consequences for host health and disease dynamics. However, these within-host interactions have traditionally been studied in laboratory mouse models, which often exclude important variation and use unnatural host–parasite combinations. Conversely, the few wild studies of within-host interactions often lack knowledge of parasite exposure and infection history. Here we exposed laboratory-reared wood mice (Apodemus sylvaticus) that were derived from wild-caught animals to two naturally-occurring parasites (nematode: Heligmosomoides polygyrus, coccidia: Eimeria hungaryensis) to investigate the impact of coinfection on parasite infection dynamics, and to determine if the host immune response mediates this interaction. Coinfection led to delayed worm expulsion and prolonged egg shedding in H. polygyrus infections and lower peak E. hungaryensis oocyst burdens. By comparing antibody levels between wild and colony-housed mice, we also found that wild mice had elevated H. polygyrus-IgG1 titres even if currently uninfected with H. polygyrus. Using this unique wild-laboratory system, we demonstrate, for the first time, clear evidence for a reciprocal interaction between these intestinal parasites, and that there is a great discrepancy between antibody levels measured in the wild vs those measured under controlled laboratory conditions in relation to parasite infection and coinfection

    Spatio-temporal patterns and characteristics of swine shipments in the U.S. based on Interstate Certificates of Veterinary Inspection

    Get PDF
    Domestic swine production in the United States is a critical economic and food security industry, yet there is currently no large-scale quantitative assessment of swine shipments available to support risk assessments. In this study, we provide a national-level characterization of the swine industry by quantifying the demographic (i.e. age, sex) patterns, spatio-temporal patterns, and the production diversity within swine shipments. We characterize annual networks of swine shipments using a 30% stratified sample of Interstate Certificates of Veterinary Inspection (ICVI), which are required for the interstate movement of agricultural animals. We used ICVIs in 2010 and 2011 from eight states that represent 36% of swine operations and 63% of the U.S. swine industry. Our analyses reflect an integrated and spatially structured industry with high levels of spatial heterogeneity. Most shipments carried young swine for feeding or breeding purposes and carried a median of 330 head (range: 1–6,500). Geographically, most shipments went to and were shipped from Iowa, Minnesota, and Nebraska. This work, therefore, suggests that although the swine industry is variable in terms of its size and type of swine, counties in states historically known for breeding and feeding operations are consistently more central to the shipment network

    A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa

    Get PDF
    Background Assessing adult mosquito populations is an important component of disease surveillance programs and ecosystem health assessments. Inference from adult trapping datasets involves comparing populations across space and time, but comparisons based on different trapping methods may be biased if traps have different efficiencies or sample different subsets of the mosquito community. Methods We compared four widely-used trapping methods for adult mosquito data collection in Kruger National Park (KNP), South Africa: Centers for Disease Control miniature light trap (CDC), Biogents Sentinel trap (BG), Biogents gravid Aedes trap (GAT) and a net trap. We quantified how trap choice and sampling effort influence inferences on the regional distribution of mosquito abundance, richness and community composition. Results The CDC and net traps together collected 96% (47% and 49% individually) of the 955 female mosquitoes sampled and 100% (85% and 78% individually) of the 40 species or species complexes identified. The CDC and net trap also identified similar regional patterns of community composition. However, inference on the regional patterns of abundance differed between these traps because mosquito abundance in the net trap was influenced by variation in weather conditions. The BG and GAT traps collected significantly fewer mosquitoes, limiting regional comparisons of abundance and community composition. Conclusions This study represents the first systematic assessment of trapping methods in natural savanna ecosystems in southern Africa. We recommend the CDC trap or the net trap for future monitoring and surveillance programs
    • …
    corecore