427 research outputs found

    Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential

    Get PDF
    Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (Delta Psi (m)). We have found that staurosporine (STS) induces a loss in Delta Psi (m) before GFP-Bax translocation can be measured. the onset of the Delta Psi (m) loss is followed by a rapid and complete collapse of Delta Psi (m) which is followed by Bax association with mitochondria. the mitochondria uncoupler FCCP, in the presence of the F-1-F-0 ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of Delta Psi (m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse Delta Psi (m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.NINDS, Biochem Sect, Surg Neurol Branch, NIH, Bethesda, MD 20892 USAUniversidade Federal de São Paulo, Dept Farmacol, São Paulo, BrazilNICHHD, Lab Cellular & Mol Neurophysiol, NIH, Bethesda, MD 20892 USAMed Univ S Carolina, Charleston, SC 29425 USAUniversidade Federal de São Paulo, Dept Farmacol, São Paulo, BrazilWeb of Scienc

    Ionic lanthanum passage across cerebral endothelium exposed to hyperosmotic arabinose

    Full text link
    Hyperosmotic media infused into the cerebral circulation open the blood-brain barrier to protein and colloid. The mechanism whereby such substances cross the affected vessels is still disputed. We describe here the transendothelial route taken by ionic lanthanum (La 3+ ), a small electron-dense tracer which, unlike colloidal lanthanum, can be administered to the living animal. In adult rats, 2.9 ml of hyperosmotic (1.4 M) arabinose was infused into the internal carotid artery as a 30-s bolus, followed by 5 mM LaCl 3 . To find the extravasated La 3+ , which is invisible by light microscopy, horseradish peroxidase (HRP) was injected simultaneously into the femoral vein. The hyperosmotic treatment resulted in exudation of both HRP and La 3+ primarily around cerebral arterioles. The La 3+ crossed arterioles through successive tight junctions between endothelial cells. Although the tight junctions were not discernibly opened, they must have become permeable because the extracellular pools between successive tight junctions were penetrated by the La 3+ . These pools are normally inaccessible to La 3+ . Luminal and abluminal pits and cytoplasmic vesicles, some of them containing La 3+ , formed intraendothelial clusters. Their role, if any, in the transfer of ion remains remains uncertain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47227/1/401_2004_Article_BF00685347.pd

    Endogenous Bax Translocation in SH-SY5Y Human Neuroblastoma Cells and Cerebellar Granule Neurons Undergoing Apoptosis

    Full text link
    Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K + -mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66150/1/j.1471-4159.1999.0721899.x.pd
    corecore