735 research outputs found
Excitation energies from density functional perturbation theory
We consider two perturbative schemes to calculate excitation energies, each
employing the Kohn-Sham Hamiltonian as the unperturbed system. Using accurate
exchange-correlation potentials generated from essentially exact densities and
their exchange components determined by a recently proposed method, we evaluate
energy differences between the ground state and excited states in first-order
perturbation theory for the Helium, ionized Lithium and Beryllium atoms. It was
recently observed that the zeroth-order excitations energies, simply given by
the difference of the Kohn-Sham eigenvalues, almost always lie between the
singlet and triplet experimental excitations energies, corrected for
relativistic and finite nuclear mass effects. The first-order corrections
provide about a factor of two improvement in one of the perturbative schemes
but not in the other. The excitation energies within perturbation theory are
compared to the excitations obtained within SCF and time-dependent
density functional theory. We also calculate the excitation energies in
perturbation theory using approximate functionals such as the local density
approximation and the optimized effective potential method with and without the
Colle-Salvetti correlation contribution
The long-wavelength behaviour of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems
The polarization-dependence of the exchange-correlation (XC) energy functional of periodic insulators within Kohn-Sham (KS) density-functional theory requires a divergence in the XC kernel for small vectors q. This behaviour, exemplified for a one-dimensional model semiconductor, is also observed when an insulator happens to be described as a KS metal, or vice-versa. Although it can occur in the exchange-only kernel, it is not found in the usual local, semi-local or even non-local approximations to KS theory. We also show that the test-charge and electronic definitions of the macroscopic dielectric constant differ from one another in exact KS theory, but are equivalent in the above-mentioned approximations
Density-operator theory of orbital magnetic susceptibility in periodic insulators
The theoretical treatment of homogeneous static magnetic fields in periodic
systems is challenging, as the corresponding vector potential breaks the
translational invariance of the Hamiltonian. Based on density operators and
perturbation theory, we propose, for insulators, a periodic framework for the
treatment of magnetic fields up to arbitrary order of perturbation, similar to
widely used schemes for electric fields. The second-order term delivers a new,
remarkably simple, formulation of the macroscopic orbital magnetic
susceptibility for periodic insulators. We validate the latter expression using
a tight-binding model, analytically from the present theory and numerically
from the large-size limit of a finite cluster, with excellent numerical
agreement.Comment: 5 pages including 2 figures; accepted for publication in Phys. Rev.
First-principles study of lattice instabilities in Ba_xSr_(1-x)TiO_3
Using first-principles calculations based on a variational density functional
perturbation theory, we investigate the lattice dynamics of solid solutions of
barium and strontium titanates. Averaging the information available for the
related pure compounds yields results equivalent to those obtained within the
virtual crystal approximation, providing frequencies which are a good
approximation to those computed for a (111) ordered supercell. Using the same
averaging technique we report the evolution of the ferroelectric and
antiferrodistortive instabilities with composition.Comment: 9 pages, 2 figures, Proceedings for Fundamental Physics of
Ferroelectrics, Aspen (CO), Feb. 13-20, 200
First-principles study of vibrational and dielectric properties of {\beta}-Si3N4
First-principles calculations have been conducted to study the structural,
vibrational and dielectric properties of {\beta}-Si3N4. Calculations of the
zone-center optical-mode frequencies (including LO-TO splittings), Born
effective charge tensors for each atom, dielectric constants, using density
functional perturbation theory, are reported. The fully relaxed structural
parameters are found to be in good agreement with experimental data. All optic
modes are identified and agreement of theory with experiment is excellent. The
static dielectric tensor is decomposed into contributions arising from
individual infrared-active phonon modes. It is found that high-frequency modes
mainly contribute to the lattice dielectric constant.Comment: 15pages, 1 figure, 5 table
Electron localization : band-by-band decomposition, and application to oxides
Using a plane wave pseudopotential approach to density functional theory we
investigate the electron localization length in various oxides. For this
purpose, we first set up a theory of the band-by-band decomposition of this
quantity, more complex than the decomposition of the spontaneous polarization
(a related concept), because of the interband coupling. We show its
interpretation in terms of Wannier functions and clarify the effect of the
pseudopotential approximation. We treat the case of different oxides: BaO,
-PbO, BaTiO and PbTiO. We also investigate the variation of the
localization tensor during the ferroelectric phase transitions of BaTiO as
well as its relationship with the Born effective charges
Thermal conduction of carbon nanotubes using molecular dynamics
The heat flux autocorrelation functions of carbon nanotubes (CNTs) with
different radius and lengths is calculated using equilibrium molecular
dynamics. The thermal conductance of CNTs is also calculated using the
Green-Kubo relation from the linear response theory. By pointing out the
ambiguity in the cross section definition of single wall CNTs, we use the
thermal conductance instead of conductivity in calculations and discussions. We
find that the thermal conductance of CNTs diverges with the CNT length. After
the analysis of vibrational density of states, it can be concluded that more
low frequency vibration modes exist in longer CNTs, and they effectively
contribute to the divergence of thermal conductance.Comment: 15 pages, 6 figures, submitted to Physical Review
Effect of the spin-orbit interaction on the thermodynamic properties of crystals: The specific heat of bismuth
In recent years, there has been increasing interest in the specific heat
of insulators and semiconductors because of the availability of samples with
different isotopic masses and the possibility of performing \textit{ab initio}
calculations of its temperature dependence using as a starting point the
electronic band structure. Most of the crystals investigated are elemental
(e.g., germanium) or binary (e.g., gallium nitride) semiconductors. The initial
electronic calculations were performed in the local density approximation and
did not include spin-orbit interaction. Agreement between experimental and
calculated results was usually found to be good, except for crystals containing
heavy atoms (e.g., PbS) for which discrepancies of the order of 20% existed at
the low temperature maximum found for . It has been conjectured that
this discrepancies result from the neglect of spin-orbit interaction which is
large for heavy atoms (1.3eV for the valence electrons of
atomic lead). Here we discuss measurements and \textit{ab initio} calculations
of for crystalline bismuth (1.7 eV), strictly speaking a
semimetal but in the temperature region accessible to us ( 2K) acting as a
semiconductor. We extend experimental data available in the literature and
notice that the \textit{ab initio} calculations without spin-orbit interaction
exhibit a maximum at 8K, about 20% lower than the measured one. Inclusion
of spin-orbit interaction decreases the discrepancy markedly: The maximum of
is now only 7% larger than the measured one. Exact agreement is obtained
if the spin-orbit hamiltonian is reduced by a factor of 0.8.Comment: 4 pages, 3 figure
- …