First-principles calculations have been conducted to study the structural,
vibrational and dielectric properties of {\beta}-Si3N4. Calculations of the
zone-center optical-mode frequencies (including LO-TO splittings), Born
effective charge tensors for each atom, dielectric constants, using density
functional perturbation theory, are reported. The fully relaxed structural
parameters are found to be in good agreement with experimental data. All optic
modes are identified and agreement of theory with experiment is excellent. The
static dielectric tensor is decomposed into contributions arising from
individual infrared-active phonon modes. It is found that high-frequency modes
mainly contribute to the lattice dielectric constant.Comment: 15pages, 1 figure, 5 table