65,321 research outputs found

    Detectors and Concepts for sub-100 ps timing with gaseous detectors

    Full text link
    We give a short compendium of the main ongoing detectors and concepts capable of performing accurate sub-100 ps timing at high particle fluxes and on large areas, through technologies based on gaseous media. We briefly discuss the state-of-the-art, technological limitations and prospects, and a new bizarre idea

    Equivalence of the sine-Gordon and massive Thirring models at finite temperature

    Get PDF
    Using the path-integral approach, the quantum massive Thirring and sine-Gordon models are proven to be equivalent at finite temperature. This result is an extension of Coleman's proof of the equivalence between both theories at zero temperature. The usual identifications among the parameters of these models also remain valid at T≠0T \neq 0.Comment: 9 pages, standard LaTe

    Automated knowledge generation

    Get PDF
    The general objectives of the NASA/UCF Automated Knowledge Generation Project were the development of an intelligent software system that could access CAD design data bases, interpret them, and generate a diagnostic knowledge base in the form of a system model. The initial area of concentration is in the diagnosis of the process control system using the Knowledge-based Autonomous Test Engineer (KATE) diagnostic system. A secondary objective was the study of general problems of automated knowledge generation. A prototype was developed, based on object-oriented language (Flavors)

    Transverse parton momenta in single inclusive hadron production in e+e−{e^ + }{e^ - } annihilation processes

    Get PDF
    We study the transverse momentum distributions of single inclusive hadron production in e+e−{e^ + }{e^ - } annihilation processes. Although the only available experimental data are scarce and quite old, we find that the fundamental features of transverse momentum dependent (TMD) evolution, historically addressed in Drell-Yan processes and, more recently, in Semi-inclusive deep inelastic scattering processes, are visible in e+e−{e^ + }{e^ - } annihilations as well. Interesting effects related to its non-perturbative regime can be observed. We test two different parameterizations for the p⊥p_\perp dependence of the cross section: the usual Gaussian distribution and a power-law model. We find the latter to be more appropriate in describing this particular set of experimental data, over a relatively large range of p⊥p_\perp values. We use this model to map some of the features of the data within the framework of TMD evolution, and discuss the caveats of this and other possible interpretations, related to the one-dimensional nature of the available experimental data

    The effect of a planet on the dust distribution in a 3D protoplanetary disk

    Get PDF
    Aims: We investigate the behaviour of dust in protoplanetary disks under the action of gas drag in the presence of a planet. Our goal is twofold: to determine the spatial distribution of dust depending on grain size and planet mass, and therefore to provide a framework for interpretation of coming observations and future studies of planetesimal growth. Method: We numerically model the evolution of dust in a protoplanetary disk using a two-fluid (gas + dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a minimum mass solar nebula (MMSN) disk comprising 1% dust by mass in the presence of an embedded planet. We run a series of simulations which vary the grain size and planetary mass to see how they affect the resulting disk structure. Results: We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a completely different appearance depending on the grain size. For low mass planets in our MMSN disk, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may enhance the formation of a second planet by facilitating the growth of planetesimals in this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore