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We study the transverse momentum distributions of single inclusive hadron production in e+e−
annihilation processes. Although the only available experimental data are scarce and quite old, we 
find that the fundamental features of transverse momentum dependent (TMD) evolution, historically 
addressed in Drell–Yan processes and, more recently, in Semi-inclusive deep inelastic scattering processes, 
are visible in e+e− annihilations as well. Interesting effects related to its non-perturbative regime can be 
observed.
We test two different parameterizations for the p⊥ dependence of the cross section: the usual Gaussian 
distribution and a power-law model. We find the latter to be more appropriate in describing this 
particular set of experimental data, over a relatively large range of p⊥ values. We use this model to map 
some of the features of the data within the framework of TMD evolution, and discuss the caveats of this 
and other possible interpretations, related to the one-dimensional nature of the available experimental 
data.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Transverse momentum dependent distribution and fragmenta-
tion functions (TMDs) are fundamental tools to understand the 
structure of nucleons in terms of their elementary constituents, 
quarks and gluons. TMDs are non-perturbative quantities which 
embed important correlations among partonic and hadronic intrin-
sic properties, like spin or orbital angular momentum, and their 
internal transverse motion.

TMD parton distribution functions can be interpreted, at lead-
ing twist, as number densities of partons carrying a light-cone 
momentum fraction x of the parent nucleon momentum P . Unpo-
larized and polarized TMD distribution functions have extensively 
been studied in Drell–Yan processes and semi-inclusive deep in-
elastic scattering (SIDIS) in the past; new-generation, dedicated 
experiments are currently running (like Drell–Yan at COMPASS or 
at RHIC) or are being planned (like the Electron–Ion Collider in the 
US and the AFTER proposal at CERN-LHC).

* Corresponding author.
E-mail addresses: boglione@to.infn.it (M. Boglione), jogh@jlab.org

(J.O. Gonzalez-Hernandez), r.taghavi@stu.yazd.ac.ir (R. Taghavi).

Of equal importance are the TMD fragmentation functions, 
which embed fundamental information on the hadronization pro-
cess, where a hadron h, carrying a light-cone fraction z of the frag-
menting parent parton, is produced. TMD fragmentation functions 
can be measured in single- or double-inclusive hadron production 
in e+e− annihilation processes or, in a more involved way, in SIDIS, 
where they necessarily couple to a TMD distribution function. Even 
with the best SIDIS data presently available, several complications 
remain to be solved. Extensive recent studies can be found, for ex-
ample, in Refs. [1–5].

In e+e− collisions, at c.m. energies below the Z 0 mass, the 
electron and positron predominantly annihilate to form a single 
virtual photon, which can subsequently produce a qq̄ pair. The 
quark and anti-quark will then convert into hadrons. At sufficiently 
high energies, these multi-hadronic events are expected to form 
two back-to-back jets (due to the limited transverse momentum 
along the original quark direction). Single inclusive distributions in 
variables relative to the jet direction, which is expected to be the 
quark direction, will therefore give information about the fragmen-
tation of quarks into hadrons. In particular, the dependence of the 
inclusive distributions in momentum transverse to the jet axis will 

http://dx.doi.org/10.1016/j.physletb.2017.06.034
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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provide the golden channel toward the phenomenological extrac-
tion of TMD FFs. An illustration of this process is given in Fig. 1.

While much effort has been put into measuring and extract-
ing unpolarized and even polarized TMD PDFs (the Sivers function 
is a well-known example), little or no experimental information 
on TMD FFs is presently available. BELLE and BaBar Collaborations 
have recently presented new multi-dimensional data analyses of 
the Collins asymmetry in e+e− → h1 h2 X processes, which have 
allowed a first glance to the intrinsic transverse motion of partons 
inside hadrons through the extraction of the Collins function, a po-
larized, chirally-odd TMD fragmentation function. Relevant recent 
literature on this and other e+e− related subjects are presented in 
Refs. [6–9]. However, no modern measurements exist of the unpo-
larized TMD FFs, although a thorough knowledge of this function 
would be of fundamental importance for any TMD study.

While waiting for up-to-date, high statistics and (possibly) mul-
tidimensional results on the p⊥ distribution of e+e− unpolarized 
cross sections (the BELLE Collaboration has already presented some 
of their preliminary Monte Carlo simulations at SPIN 2016 [10]), 
we concentrate on a set of rather old measurements of sin-
gle inclusive hadron production in e+e− annihilation processes, 
e+e− → h X , by the TASSO Collaboration at PETRA (DESY) [11,
12]: p⊥ distributions were provided for four different c.m. en-
ergies between 14 and 44 GeV, corresponding to charged parti-
cle production summed over all charges and all particle species, 
with no flavor separation. Cross sections are given as functions of 
p⊥ , integrated over the energy fraction zh = 2Eh/

√
s of the de-

tected hadron h. Note that, up to corrections of order p2⊥/Q 2 (here 
Q 2 ≡ s), zh coincides with the light-cone momentum fraction z. 
Although no information is offered about possible cuts applied to 
zh , average values are provided for each c.m. energy set, as sum-
marized in Table 1: they correspond to rather low values, ranging 
from 〈zh〉 = 0.13 at 14 GeV to 〈zh〉 = 0.08 at 44 GeV. Together 
with TASSO data, we also consider the analogous MARKII Collabo-
ration measurements [13], collected at the SLAC storage ring PEP, 
at a fixed c.m. energy of 29 GeV, and PLUTO data on the average 
transverse momentum square [14], collected at PETRA (DESY).

Crucial to all these data is the correct determination of the 
jet axis, to which the p⊥ distributions are most sensitive, be-
side proper treatment of geometric acceptance effects, trigger bias, 
kinematics cuts and radiative corrections. These corrections, ob-
tained by comparison to Monte Carlo simulations, are somehow 
model dependent. Clearly all these issues introduce very large un-
certainties which, according to modern standards, were largely un-
derestimated.

Although these data are affected by several limitations (no 
hadron separation, limited coverage, zh integration, low 〈zh〉 val-
ues, difficulties in reconstructing the jet axis, etc), they represent 
an extremely interesting example of a direct measurement of in-
trinsic transverse momenta. In fact, as mentioned above, the jet 
axis resulting from each e+e− scattering identifies the direction of 
the fragmenting qq̄ pair (q and q̄ should be back to back in the 
e+e− c.m. frame if radiative effects are appropriately subtracted), 
and the detected p⊥ represents a direct measurement of the trans-
verse momentum of the final hadron with respect to the fragment-
ing parent parton, see Fig. 1.

The purpose of this article is two-folded: first, we will de-
vise and test an appropriate functional form to describe the p⊥
distributions measured by TASSO and MARKII, achieving as much 
information as we possibly can on the TMD unpolarized FF; then, 
a careful interpretation of our results will be provided focusing on 
the features related to TMD factorization within a TMD evolution 
scheme, in the non-perturbative regime.

As these measurements offer quite limited information, we will 
not be able to perform a detailed extraction of the TMD frag-

Fig. 1. Illustration of a typical hadronic event from the e+e− annihilation process, 
showing the reconstructed jet axis, the hadron momentum Ph and its transverse 
component p⊥ , perpendicular to the jet axis.

Table 1
Upper and central panels: center of mass energies 
and corresponding zh mean values for the TASSO and 
MARK II cross sections. Lower panel: center of mass en-
ergies corresponding to PLUTO measurements of 〈p2⊥〉.

Experiment c.m. energy 〈zh〉
TASSO 14 GeV 0.13

22 GeV 0.11
35 GeV 0.09
44 GeV 0.08

MARK II 29 GeV 0.09

PLUTO 7.7 GeV –
9.4 GeV –
12.0 GeV –
13.0 GeV –
17.0 GeV –
22.0 GeV –
27.6 GeV –

mentation functions as done in the past [2,8,15–17]. However, we 
will observe that interesting signatures of TMD factorization in 
the non-perturbative regime can be detected in these data sets. 
In particular, we will find indications that a power-law p⊥ behav-
ior, different from the Gaussian parametrization of the TMD FFs we 
usually used in our previous analyses, might reproduce these data 
more successfully, especially as p⊥ grows larger then a few hun-
dred MeV and we enter the region in which TMD evolution effects 
start to become more visible.

2. Formalism

Similarly to the collinear case [18], the e+e− → h X cross sec-
tion can be casted in the following form:

dσ h

dz d2 p⊥
= Lμν W μν = 4πα2

3s
z F h

1(z, p⊥; Q 2) . (1)

Within TMD-factorization, up to power suppressed terms, the 
hadronic tensor W can be expressed as

W μν = W μν
T M D + W μν

coll . (2)

The first term on the right hand side of Eq. (2), W μν
T M D , corre-

sponds to the region of small transverse momenta, while the sec-
ond, W μν

coll , is calculable within collinear factorization and contains 
corrections that become important at larger values of p⊥ . In the 

e• 
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case at hand, as there is only one observed final hadron, one may 
write for the TMD term:

W μν
T M D ∝

∑
f

|H f (Q ;μ)|μν Dh/ f (z, p⊥;μ,ζD), (3)

where Q is the hard scale of the process, z and p⊥ are the ob-
served hadronic variables, μ is the renormalization scale, while ζD

is a regulator for the light-cone divergences that arise in TMD-
factorization. The hard factor H f can be calculated in perturbation 
theory, while the TMD FF is defined by the relations

Dh/ f (z, zk⊥;μ,ζD) ≡ 1

(2π)2

∫
d2b⊥e−ik⊥· b⊥ D̃h/ f (z,b⊥;μ,ζD) ,

(4)

D̃h/ f (z,b⊥;μ,ζD) ≡
∑

j

[
C̃ j/ f ⊗ dh/ j(z;μb)/z2

]

×exp

{ μ∫
μb

dμ̃

μ̃

[
γD(αs(μ̃);1) − γK (αs(μ̃)) log

(√
ζD

μ̃

)]}

×exp

{
K̃ (b∗;μb) log

(√
ζD

μb

)}

×exp

{
gh/ j(z,b⊥) + gK (b⊥) log

(√
ζD

ζ
(0)
D

)}
. (5)

Notice the conjugate variable to b⊥ is k⊥ rather than p⊥ (k⊥ is the 
component of the fragmenting parton momentum transverse to 
the final hadron, in a reference frame in which the latter is purely 
longitudinal). Details on the various ingredients of Eq. (5) can be 
found in Refs. [18,19]. For our purposes it suffices to note that in 
the first three factors of Eq. (5) all the ingredients are calculable 
within perturbation theory, except for the collinear fragmentation 
function dh/ j . Notice that the Wilson coefficients, C̃ j/ f , the integral 
of the anomalous dimensions, γD and γK , and the Collins–Soper 
(CS) kernel, K̃ , depend on b⊥ only through the quantity b∗ , which 
is set to remain smaller than some maximum bmax . The last factor 
in Eq. (5) corresponds essentially to non-perturbative information.

In what follows we will consider the case in which the purely 
perturbative ingredients of the TMD FF, namely C̃ j/ f , γK (D) and K̃
are calculated to order αs .

There is some freedom in the definition of Eq. (5), encompassed 
in the arbitrary quantities μ, μb , b∗ , ζD , ζ (0)

D . For our analysis we 
adopt the usual choices [19], μ → Q , ζD → Q 2, ζ (0)

D → Q 2
0 and 

μb = 2e−γE /b∗ , where Q 0 is some initial scale and γE is the Euler–
Mascheroni constant. With these choices the CS kernel K̃ vanishes 
at order αs , so the third factor in Eq. (5) reduces to one. To this 
same order, the factor containing the anomalous dimensions γD

and γK can be expressed in a closed analytic form. For our pur-
poses, it will be useful to classify the result of this integral in terms 
of its dependencies on Q and b∗ , namely

exp

{ μ∫
μb

dμ̃

μ̃

[
γD(αs(μ̃);1) − γK (αs(μ̃)) log

(√
ζD

μ̃

)]}

−→ N�(Q ) f �(b∗, Q 0) exp

{
λ�(b∗) log

(
Q

Q 0

)}
, (6)

for which we have used the results of the Appendices in Ref. [3]. 
The quantities N�(Q ), f �(b∗, Q 0) and λ�(b∗) are flavor inde-
pendent functions that encode the most prominent perturbative 
effects in the definition of the TMD FF. The last of these three func-
tions,

λ�(b∗) ≡ 32

27
log

(
log

2e−γE


Q C D b∗

)
, (7)

is the most interesting since, being multiplied by log(Q /Q 0), it 
correlates b∗ with Q , which means it has the effect of modifying 
the shape of the TMD FF under evolution. With these considera-
tions, one may write for the TMD FF:

D̃h/ f (z,b⊥;μ,ζD) =

N�(Q )
∑

j

[
C̃ j/ f ⊗ dh/ j(z;μb)/z2

]
egh/ j(z,b⊥) f �(b∗, Q 0)

×exp

{(
λ�(b∗) + gK (b⊥)

)
log

(
Q

Q 0

)}
. (8)

Therefore, except for the overall normalization factor N�(Q ), the 
effects of evolution at order αs can be mapped to either the non-
perturbative function gK (b⊥), or the perturbative quantity λ�(b∗). 
We note that with the choice μb = 2e−γE /b∗ , the order-αs Wilson 
coefficients C̃ j/ f do not contain any Q 2-dependence (see appendix 
in Ref. [19]).

In the region where TMD effects dominate (see Eqs. (1)–(3)), 
flavor independence of gK and λ� in Eq. (8) implies

F−1

{
dσ h

dz d2 p⊥

}
∝

exp

{(
λ�(b∗) + gK (b⊥)

)
log

(
Q

Q 0

)}∣∣∣∣∣
b⊥→z b⊥

, (9)

where the symbol F−1 indicates the two-dimensional inverse 
Fourier transform, from momentum to impact parameter space, 
and the transformation b⊥ → z b⊥ is needed to account for the 
extra factor of z that appears in the definition of Eq. (3), compared 
to the TMD term in the hadronic tensor in Eq. (2). In the follow-
ing section we will use relations (7)–(9), valid to order αs , to make 
an interpretation of our results. For this, we will model the cross 
section in a way consistent with Eq. (3).

3. Data fitting and results

A full analysis within a TMD-evolution scheme should include 
all of the contributions in Eq. (2), as well as a matching pre-
scription to interpolate between regions of small and large p⊥ , 
as originally prescribed in Ref. [20]. It is important to stress that 
all of these ingredients provide crucial constraints that any full 
analysis should include. Some recent studies related to the compli-
cations involved in the matching prescriptions for SIDIS processes 
are presented in Refs. [4,21]. However, for such type of analyses, 
multidimensional data sets are most suitable, where one can com-
pletely disentangle the effects of different kinematics variables. In 
the case of the measurements of Refs. [11–14], the large system-
atic uncertainties induced by z-integration can only render limited 
insight on TMD-effects. Moreover, very low values of 〈zh〉 can en-
danger the applicability of factorization theorems. However, it is 
still interesting to investigate what information about evolution 
can be extracted from these measurements. In fact, even for these 
z-integrated cross sections, one may expect the shape of the p⊥
distributions to be affected by TMD-evolution effects.
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In order to address this question it becomes essential to make 
an estimate of where the large transverse momentum corrections 
start becoming important in the TASSO and MARKII data sets. To 
do so, we start by considering the errors of the TMD approxima-
tion, which are of order O(k⊥/Q ) = O(p⊥/zQ ). In general, one 
expects that at p⊥ ∼ zQ , the cross section should receive contri-
butions from the collinear term in Eq. (2). Using the average values 
of Table 1, one may estimate that this contributions should be sig-
nificant at p⊥ ∼ 2 GeV. We identify this as the matching region. 
In this article we will attempt to extract information only about 
the non-perturbative evolution carried by gK in Eq. (8), so we will 
constrain our analysis to the region of p⊥ < 1.0 GeV.

Given the particular kinematics of the TASSO experiment and 
the low values of zh , one may wonder whether factorization the-
orems can be applied. In fact, it is possible that the experimental 
data receive contributions from non-TMD effects. However, as the 
data are integrated over zh and there is no possibility for us to im-
pose cuts over zh , we will proceed under the assumption that the 
main features of the analyzed data are generated by TMD effects, 
especially as far as their changes in p⊥-shape with Q is concerned. 
As we will see later on, the p⊥ distributions show a broadening, 
consistent with the expected TMD behavior.

Note that we also impose a lower cut on p⊥ , such that p⊥ >

0.03 GeV; this amounts to excluding the first data point in the 
TASSO data sets.

In order to relate the shape of the data to possible TMD-
evolution effects, one needs a model that can reproduce the trans-
verse momentum distribution of the final hadron h. Then, by look-
ing at the b⊥-space, one may connect the parameters of the model 
to some of the information contained in the definition of Eq. (5), 
as discussed in Ref. [3].

At least two functional forms have been shown to appropriately 
describe transverse momentum distributions [2,3].

• Gaussian form: it is the most commonly used parametrization 
for phenomenological studies, it has been shown to repro-
duce experimental data very successfully in both Drell–Yan 
and SIDIS processes. It has the advantage of being easy to in-
tegrate analytically.

• Power-law: it is very flexible, even with a limited number of 
free parameters. Not only can it appropriately reproduce the 
behavior of the cross section at small p⊥ , but it can also in-
corporate its tail at larger p⊥ values.

We will consider both of these functional forms in order to de-
scribe the low-p⊥ region of the data. Our aim is to focus on the 
kinematics ranges where TMD-effects are dominant. As discussed 
above, one may estimate that perturbative effects will start to be-
come important roughly around p⊥ ∼ 2 GeV, but could in fact be 
non-negligible at even smaller values of transverse momentum, es-
pecially as the data we consider are integrated over z. Our working 
hypothesis is that for p⊥ < 1 GeV the TMD-term in Eq. (2) is the 
largest contribution to the cross section.

We model the structure function F1 in Eq. (1) so that

dσ h

dz d2 p⊥

∣∣∣∣∣
model

= 4πα2

3s

∑
q

eq
2 Dh

q(z, p⊥; Q 2)

= 4πα2

3s

∑
q

eq
2 Dh

q(z, Q 2) h(p⊥) , (10)

which extends the leading order expression for the collinear cross 
section. In Eq. (10), the sum runs over all q and q̄ flavors, and 
we have assumed that the TMD fragmentation function may be 
written as

Dh
q(z, p⊥) = Dh

q(z) h(p⊥) , (11)

where Dh
q(z) is the collinear, unpolarized FF (which we take from 

Ref. [22]). The function h(p⊥) incorporates all of the p⊥ depen-
dence of the TMD FF, it is flavor independent and it is normalized 
so that it integrates to unity.

The TASSO collaboration provides cross sections differential in 
p⊥ , normalized to the fully inclusive cross section, which at lead-
ing order read

σtot
L O= σ0 = 4πα2

3s

∑
q

eq
2, (12)

so that our fits will involve the expression

1

σ0

dσ h

dp⊥

∣∣∣∣∣
model

= 2π p⊥ N

[∫
dz

∑
q e2

q Dh
q(z; Q 2)∑
q e2

q

]
h(p⊥) . (13)

A note of caution is necessary at this point. The TASSO distri-
butions in p⊥ at different energies cannot be described by simply 
using the model of Eq. (10). Instead, one must incorporate a treat-
ment for their normalizations at different values of Q . In Eq. (13)
this is reflected by the parameter N . While this may be in conflict 
with a possible probabilistic interpretation of the function h(p⊥), 
it should not affect our conclusions regarding TMD evolution, since 
for that, we will focus on aspects of the p⊥ distributions that re-
gard their shape, but not the precise values of their maxima. We 
note that accounting for all the features of these data may be 
challenging even within a full TMD analysis, as large systematic 
errors may translate into out-of-control normalizations when deal-
ing with z-integrated data.

The fits in the next subsections are performed on the TASSO 
p⊥-distributions only. We will use the MARK II p⊥-dependent nor-
malized cross section and the TASSO measurements of 〈p2⊥〉 to 
cross-check our results. PLUTO data will be shown only for com-
pleteness, although we will not use them in our analysis as they 
are not fully compatible with the other experiments. When ap-
propriate, error bands corresponding to a 2σ confidence level are 
provided, obtained by generating random points in the parameter 
space for which χ2

i ∈ [χ2
0 , χ2

0 + �χ2], where χ2
0 is the minimal 

value given by the fit and �χ2 depends on the number of param-
eters of the model; the relevant cases in our fits involve either 6 or 
7 free parameters, which correspond to �χ2 values of 12.85 and 
14.34, respectively.

3.1. Gaussian shape at low p⊥

We start by applying a Gaussian model with a constant width:

h(p⊥) = e−p⊥2/〈p⊥2〉

π〈p⊥2〉 . (14)

As mentioned earlier, in order to describe the data we need an 
appropriate treatment for the normalization. Unexpectedly, we find 
that using different multiplicative constants, one for each energy, is 
not enough to obtain a good fit, even in the limited region of p⊥ <

0.5 GeV (see the first entry in Table 2). Instead, by also introducing 
a Q -dependent shift for the cross sections, so that one has

1

σ0

dσ h

dp⊥

∣∣∣∣∣
model

−→

2π p⊥ N

[∫
dz

∑
q e2

q Dh
q(z; Q 2)∑
q e2

q

]
h(p⊥) + δ Q , (15)
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Fig. 2. Gaussian description of the TASSO p⊥ distributions at 4 different c.m. ener-
gies [12]. On the upper panel the Gaussian model with constant width, see Eqs. (14)
and (15), up to p⊥ = 0.5 GeV. On the lower panel the Gaussian model with the Q 
dependent width of Eq. (16), up to p⊥ = 1.0 GeV.

one can obtain a good description of the data, as seen in the 
second entry of Table 2 and on the upper panel of Fig. 2. This 
unconventional prescription to deal with the normalization, while 
leaving little room for a partonic interpretation for the function 
h(p⊥), allows us to verify quantitatively that as far as the width 
of the p⊥ distribution is concerned, no significant change can be 
observed with growing Q. One may not conclude, however, that 
TMD-effects do not appear in these transverse momentum ranges, 
but rather that the data analyzed do not have the necessary accu-
racy to show possible width changes in this region. Thus, one must 
try to extend the description of the data to larger values of p⊥ .

For p⊥ > 0.5 GeV, a noticeable dependence of the distributions 
on the c.m energy suggests that a Q -dependent width may be 
appropriate. However, even with this extension of the model, de-
scribing the data past this point turns out to be extremely difficult. 
To illustrate this, we consider the functional form

〈p2⊥〉 = 2 g1 + 2 g2 z2 log

(
Q

2 Q 0

)
, (16)

which allows for some comparison to previous phenomenological 
studies [23,24] where, within a CSS evolution scheme, a Gaussian 
behavior of the non-perturbative Sudakov factor in the b⊥ space 
was assumed. This time, we use a multiplicative constant for each 
value of Q (δ = 0 in Eq. (15)), and fix Q 0 = 1.6 GeV. The last entry 
of Table 2 shows the results of the fit for p⊥ < 1 GeV, using the 
extended Gaussian model corresponding to Eq. (16). The obtained 
minimal χ2 value points to a rather low quality of the description 
of the data. The corresponding plot, in the lower panel of Fig. 2, 
shows that there is some tension between a successful description 
of the peak at low p⊥ and an equally good description of the tail 
at larger p⊥ values. As we will show in the next subsection, the 
power-law can in fact accommodate for both of these features of 
the data.

3.2. Power-law shape at low and moderate p⊥

So far, we have tried the Gaussian ansatz for the p⊥ distribu-
tions. We have found that the data favors a constant width, for 
values up to p⊥ = 0.5 GeV. However, this can only be achieved 
by introducing a Q -dependent shift, which cannot be easily in-
terpreted within a partonic picture. The Gaussian class of models 
does not seem to be appropriate for larger values of p⊥ .

In order to describe the data up to p⊥ = 1 GeV, we test a 
power-law parametrization, given by

h(p⊥) = 2(α − 1)M2 (α−1) 1(
p2⊥ + M2

)α , (17)

where the factor 2(α−1)M2 (α−1) is set so that h(p⊥) integrates to 
unity. The two-dimensional inverse Fourier transform of this func-
tion has an exponentially decaying asymptotic behavior, consis-
tent with what would be expected from general arguments within 
quantum field theory, as discussed in Refs. [18,25]. In impact pa-
rameter space the power-law becomes

F−1

{
1(

p2⊥ + M2
)α

}
= 1

2α π �(α)

(
b⊥
M

)α−1

K1−α(b⊥M)

large b⊥−→ 1

2α π �(α)

(
b⊥
M

)α−1√π

2

e−b⊥M

√
b⊥M

[
1 +O

(
1

b⊥M

)]
,

(18)

where K1−α(b⊥M) is the modified Bessel function of the second 
kind. In what follows, we use an independent normalization for 
each value of Q . As discussed before, we are interested in the 
shape of the distributions, rather than on their overall normaliza-
tions.

In the power-law parametrization of the p⊥-differential cross 
section, the parameter M2 is related to the position of its peak, p0⊥ , 
by the relation M2 = (

2 α − 1
)

p0⊥2. Since the studied distributions 
reach their maximum at roughly the same value of transverse mo-
mentum, p⊥ ≈ 0.212 GeV, for all values of the c.m. energy, in our 
main analysis we have imposed the conditions that

M2 = (
2α − 1

)
p0⊥2

p0⊥ =0.212 GeV . (19)

We have verified that setting M2 free, does in fact satisfy Eqs. (19)
within errors. It is, however, useful to reduce the number of pa-
rameters by directly imposing these relations.

First, to test that the power-law can appropriately describe the 
data, we conducted simple independent fits for each value of the 
c.m. energy, which renders one value of α for each Q . The most 
interesting aspect of this preliminary fit is that it shows a clear 
dependence of the parameter α on Q , despite the use of inde-
pendent normalizations. The trend of the values for α is displayed 
in Fig. 3, which shows a decrease of the its optimal value with 
Q . Due to the large uncertainties in the determination of α, there 
are likely several functional forms that can accommodate the ob-
served behavior. In order to make an educated guess for a suitable 
Q -dependence in α, we assume that the integration over z does 
not alter the structure of the relation in Eq. (9), namely

F−1

{
dσ h

d 2 p⊥

}
∝exp

{
g̃(b⊥) log

(
Q

Q 0

)}
, (20)

for some function g̃(b⊥). Thus, one can see that a logarithmic be-
havior for α may be appropriate by looking at the asymptotic limit 
of the power-law in b⊥-space, Eq. (18). First, for the values α0 and 
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Table 2
Fits of the TASSO four sets of cross sections, corresponding to the Gaussian parameterization of the p⊥ distributions. 
Parametrization I refers to the usual choice of Eq. (14), Parametrization II refers to the Gaussian corrected by a Q-dependent 
shift, see Eq. (15), while Parametrization III corresponds to a Gaussian distribution with a Q dependent width, as in Eq. (16).

Parametrization Normalization Gaussian width χ2
pt

Gaussian – I N = {N14, N22, N35, N44} 〈p2⊥〉 = constant
p⊥ ∈ [0.03 − 0.50] GeV N14 = 2.3 ± 0.2, N22 = 2.7 ± 0.2 〈p2⊥〉 = 0.118 ± 0.004 GeV2 5.9
36 data points N35 = 3.1 ± 0.1, N44 = 3.2 ± 0.1

Gaussian – II N , δ Q 〈p2⊥〉 = constant
p⊥ ∈ [0.03 − 0.50] GeV N = 1.8 ± 0.2 〈p2⊥〉 = 0.098 ± 0.005 GeV2 0.74
36 data points δ = 0.22 ± 0.03 GeV−2

Gaussian – III N = {N14, N22, N35, N44} 〈p2⊥〉 = 2g1 + 2g2 z2 log Q
3.2

p⊥ ∈ [0.03 − 1.00] GeV N14 = 2.7 ± 0.2, N22 = 3.3 ± 0.3 g1 = 0.013 ± 0.004 GeV2 2.7
56 data points N35 = 4.0 ± 0.1, N44 = 4.3 ± 0.2 g2 = 2.6 ± 0.3 GeV2

Fig. 3. Values of α in Eq. (17) that best describe the distributions of [12]. The trian-
gles represent the minimal values of independent fits, performed for each value of 
the center of the c.m energy √s = Q . The shaded bands indicate the corresponding 
uncertainty.

α that describe the data at two given values Q 0 and Q , if (20)
holds, one should have

b α0⊥ exp

{
g̃(b⊥) log

(
Q

Q 0

)}
∝ b α⊥ , (21)

in the large-b⊥ limit. This can be achieved if

g̃(b⊥)
large b⊥−→ α̃ log(ν b⊥) , (22)

for some values α̃ and ν , which in turn provides the relation

α = α0 + α̃ log

(
Q

Q 0

)
. (23)

We have implemented Eq. (23) into a fit and confirmed that in fact 
it reproduces well the TASSO data. Results are shown on the third 
panel of Table 3, and in the top plot in Fig. 4, which includes errors 
corresponding to a 2σ confidence level. We compare these results 
to the MARK II data set in the bottom panel of Fig. 4.

The argument presented above, leading to a logarithmic Q -
dependence for the power α, has some caveats. First, it depends 
on whether Eq. (20) is approximately correct. Furthermore since 
it considers only the asymptotic large-b⊥ behavior of Eq. (18), 
Eq. (23) does not need to hold for values larger than p⊥ ∼ M. 
Therefore, even if one can describe the data, any interpretation 
of the logarithmic behavior of α, in terms of the ingredients that 
define the TMD FF, Eq. (5), should be taken with great caution. 
Nonetheless, it is worthwhile to explore this possibility.

Notice that the function g̃ acquires its behavior from λ� and 
gK . Since the first varies slowly with b⊥ , and in fact does freeze 
to a constant value at large enough b⊥ (see Eq. (7)), one may 
see Eq. (23) as the manifestation of a logarithmic large-b⊥ trend 
for gk(b⊥), analogous to Eq. (22). A behavior consistent with dis-
cussions in Refs. [3,25]. However, we stress that one may well 

reproduce the data by using different assumptions. As a counter 
example we consider a simple picture where the cross section 
takes the form

dσ

dz d2 p⊥
∝

(
1

p2⊥ + z M̃
2

) β1+ β2 z

, (24)

and where one accounts for the integration over z by some average 
value 〈z〉, leading to

dσ

d2 p⊥
∝

(
1

p2⊥ + 〈z〉 M̃
2

) β1+ β2 〈z〉
, (25)

where the parameters β1, β2 and M̃ are to be determined by a fit. 
In this case, it is indeed possible to obtain a good description of 
the data by using the experimental average values of z of Table 1, 
since they exhibit a seemingly logarithmic trend. However, it is dif-
ficult to make a connection to TMD evolution since the values in 
Table 1 are in general affected by correlations between Q and z
of different origin, possibly related to effects that go beyond the 
scope of TMD factorization, given the low values of 〈zh〉. In fact, 
notice that the condition of Eq. (19) implies a logarithmic behav-
ior for our fit parameter M2. It is possible that, for instance, the 
effects of the TMD evolution, encoded in gK , result in changes in 
the power α that fit the data, while the changes in M2 are the 
result of correlations induced by the integration over z. It seems, 
however, that the lack of information about the z-dependence of 
the TMD FF in the TASSO and MARK II measurements hinders a 
more solid conclusion about TMD evolution effects in these data 
sets.

Finally, it is useful to test the model of Eqs. (17) and (23) for 
larger values of p⊥ . In fact, this is necessary to calculate 〈p2⊥〉, 
since it implies integration over the full range of p⊥ . For this, we 
keep the first of the constraints (19), but free the parameter p0⊥ . 
First, we perform a fit including data up to p⊥ = 2 GeV. As seen 
in Fig. 5 and the last entry of Table 3, the model can successfully 
accommodate this extended range of p⊥ . This range is, however, 
not enough to reproduce to a good accuracy the corresponding 
TASSO measurements of 〈p2⊥〉. Thus, we further extend the range 
analysis of TASSO data to values up to p⊥ = 3 GeV and use the re-
sulting minimal parameters to estimate 〈p2⊥〉. Fig. 6 shows our es-
timate and the data from TASSO. The range of integration used im-
plies that average values of transverse momentum receive impor-
tant contributions from non-TMD effects. For completeness, Fig. 6
shows also 〈p2⊥〉 data by PLUTO. We note that PLUTO measure-
ments for 〈p2⊥〉 are systematically smaller than those by TASSO. 
This reflects the fact that data selection is not compatible between 
experiments. They do however, seem to follow the same depen-
dence on Q .
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Table 3
Fits of the TASSO four cross sections, corresponding to the power-law parameterization of the p⊥ distributions. 
Parametrization I refers to 4 independent fits (one for each data set corresponding to a different c.m. energy) using the 
functional form of Eq. (17), with constant α and M2 parameters. Parametrization II refers to the simultaneous fit of the 
four data sets, using the functional form of Eq. (17), with constant α and M2 parameters. Parametrization III refers to 
the simultaneous fit of the four data sets, using the functional form of Eq. (17), with Q-dependent α and M2 parame-
ters. Parametrization IV refers to the same case as III, but now the fit is performed on the extended range p⊥ < 2 GeV, for 
which we free the parameter p0⊥ .

Parametrization Normalization 
N = {N14, N22, N35, N44}

Parameters χ2
pt

Power-law – I N14 = 2.6 ± 0.1 α = {α14,α22,α35,α44} χ2
14 = 0.35

p⊥ ∈ [0.03 − 1.00] GeV N22 = 3.2 ± 0.2 χ2
22 = 0.30

14 × 4 data point N35 = 4.0 ± 0.1 α14 = 3.3 ± 0.4, α22 = 2.5 ± 0.3 χ2
35 = 0.88

N44 = 4.4 ± 0.2 α35 = 2.2 ± 0.1, α44 = 2.0 ± 0.1 χ2
44 = 0.84

Power-law – II N14 = 2.6 ± 0.2 α = constant
p⊥ ∈ [0.03 − 1.00] GeV N22 = 3.3 ± 0.2
56 data points N35 = 4.0 ± 0.1 α = 2.2 ± 0.1 2.87

N44 = 4.2 ± 0.2

Power-law – III N14 = 2.6 ± 0.2 α = α0 + α̃ log(Q /Q 0)

p⊥ ∈ [0.03 − 1.00] GeV N22 = 3.3 ± 0.2 Q 0 = 14 GeV
56 data points N35 = 4.0 ± 0.1 0.66

N44 = 4.4 ± 0.2 α0 = 3.1 ± 0.4, α̃ = −1.0 ± 0.4

Power-law – IV N14 = 2.6 ± 0.2 α = α0 + α̃ log(Q /Q 0)

p⊥ ∈ [0.03 − 2.00] N22 = 3.2 ± 0.3 Q 0 = 14 GeV
76 data points N35 = 4.0 ± 0.1 α0 = 3.5 ± 0.3, α̃ = −1.1 ± 0.3 0.95

N44 = 4.3 ± 0.2 p0⊥ = 0.219 ± 0.005 GeV

Fig. 4. In the top panel we show the results from our fit to TASSO experimental data 
using the power-law of Eqs. (17) and (23), in the range 0.03 GeV < p⊥ < 1.0 GeV. 
To avoid overlapping and provide a clear display of the 2σ error bands, we plot 
the distributions for different energies applying an arbitrary shift. In the bottom 
panel we compare the results from the fit to TASSO data to the MARK II cross 
section. Note that a different normalization and its uncertainties have to be de-
termined independently for this data set. We don’t display the first bin, centered at 
p⊥ = 0.05 GeV.

4. Final remarks

TMD FFs embed the essence of hadronization, one of the most 
important manifestations of QCD in the non-perturbative regime. 
It is therefore important to gather as much information as possible 
on these soft quantities, which cannot be computed, but have to 
be inferred from experiment. Over the last few years, several anal-

Fig. 5. Results obtained by using the power-law of Eqs. (17) and (23) compared 
to TASSO p⊥-dependent distributions [12], in the range 0.03 GeV < p⊥ < 2.0 GeV. 
Error bands are computed using a 2σ -confidence level, as explained in Section 3.

Fig. 6. Estimation of the transverse momentum mean value, 〈p2⊥〉, obtained by using 
the parameters extracted by fitting the TASSO p⊥ distributions up to 3.0 GeV. Empty 
squares correspond to PLUTO data [14] while filled diamonds correspond to TASSO 
measurements [12]. The shaded area represents the uncertainty of our calculation 
and is computed as explained in Section 3.

yses have been performed to extract the polarized TMD FFs, like 
the Collins function, using the measurements of the Collins asym-
metries in e+e− → h1h2 X processes provided by BELLE and BaBar 
Collaborations, which delivered multidimensional data (in bins of 
z1, z2, p⊥1, p⊥2) with impressive statistics and very high preci-
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sion. Unfortunately, no analogous data have been provided on the 
p⊥-distributions of the unpolarized cross sections, or multiplicities, 
to allow for the extraction of the unpolarized TMD FFs. The ab-
sence of these fundamental bricks encumbers the analysis of any 
other polarized, as well as unpolarized, process.

At present, the only available data are some old (and almost for-
gotten) measurements of e+e− → h X cross sections from TASSO 
and MARKII Collaborations. Although these are one-dimensional 
data and are affected by large uncertainties, as discussed in Sec-
tion 1, they have the unique advantage of delivering measurements 
at different c.m. energies; therefore, they can provide a valuable 
starting point not only to learn about the unpolarized TMD FFs, 
but also to study the physiognomy of their TMD evolution.

In this article we assess the extent to which the effects of 
TMD evolution can be observed in these data. For this purpose, 
our main tool is an analysis based on a simple partonic picture 
in which the cross section is factorized, as in Refs. [2,8,15–17]. 
While these types of analysis typically use a Gaussian form, we 
also test a power-law behavior to describe the data, as suggested 
in Ref. [3]. We extend this class of models to the case in which 
the parameterization is supplemented by some Q dependence, and 
use these results to provide an interpretation within a TMD evo-
lution framework, see Eq. (5), discussing the caveats related to the 
limited amount of information provided by these data.

We start by modeling the p⊥ dependence of the cross section 
by a Gaussian shape and fit the four sets of TASSO cross section 
data (corresponding to four different c.m. energies) to extract the 
corresponding free parameters, see Table 2. Our analysis shows 
that the Gaussian distribution can only describe the data up to 
p⊥ ∼ 0.5 GeV, provided the cross sections are adjusted with an ad-
hoc, additive term δQ . In this region no Q -evolution effects can be 
observed in the Gaussian width of the p⊥-distributions. The diffi-
culties related to the interpretation of these results, however, leads 
us to consider a different parameterization.

We then focus on a power-law parametrization of the p⊥ de-
pendence of the cross section, which shows to be more appropriate 
than the Gaussian model and provides a successful description of 
the TASSO p⊥-distributions over a much larger range of p⊥ values. 
We performed two consistency checks. First, we compared the re-
sults of our main fit on TASSO data, reported in the third panel 
of Table 3, with the MARK II data, for which we found a reason-
able agreement of our model. Second, we compared the results 
from fitting TASSO p⊥-distributions to the reported values of 〈p2⊥〉. 
We found that the latter can only be reproduced by extending the 
range of transverse momentum to p⊥ ≤ 3 GeV.

Finally, we provide an argument to explain that the Q depen-
dence in the power-law can be consistent with a logarithmic be-
havior, in the large b⊥ limit, of the function gK , which encodes the 
non-perturbative evolution effects in the definition of the TMD FF.

The nature of these data forces us to be cautious with the inter-
pretation of our results. In fact, it seems unlikely that these data 
by themselves would allow to disentangle the TMD effects from 
other Q -dependence in the data. This is related to the integra-
tion over z, which induces a degree of ambiguity in the possible 
interpretations. Thus, one should further test any conjecture with 
multi-dimensional data.

In the foreseeable future, unpolarized single-hadron production 
at fixed energies by BELLE and BaBar Collaborations, differential 
in both z and p⊥ , may indeed provide enough constraints on the 
z-dependence of the fragmentation process, allowing for the pos-
sibility of a full TMD analysis when combined with the TASSO and 
MARK II data.
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