1,229 research outputs found
Coronal Mass Ejections - Propagation Time and Associated Internal Energy
In this paper, we analyze 91 coronal mass ejection (CME) events studied by
Manoharan et al. (2004) and Gopalswamy and Xie (2008). These earth-directed
CMEs are large (width 160) and cover a wide range of speeds
(120--2400 {\kmps}) in the LASCO field of view. This set of events also
includes interacting CMEs and some of them take longer time to reach 1 AU than
the travel time inferred from their speeds at 1 AU. We study the link between
the travel time of the CME to 1 AU (combined with its final speed at the Earth)
and the effective acceleration in the Sun-Earth distance. Results indicate that
(1) for almost all the events (85 out of 91 events), the speed of the CME at 1
AU is always less than or equal to its initial speed measured at the near-Sun
region, (2) the distributions of initial speeds, CME-driven shock and CME
speeds at 1 AU clearly show the effects of aero-dynamical drag between the CME
and the solar wind and in consequence, the speed of the CME tends to equalize
to that of the background solar wind, (3) for a large fraction of CMEs (for
50% of the events), the inferred effective acceleration along the
Sun-Earth line dominates the above drag force. The net acceleration suggests an
average dissipation of energy 10 ergs, which is likely provided
by the Lorentz force associated with the internal magnetic energy carried by
the CME.Comment: 18 pages, 6 figure
Cup products on polyhedral approximations of 3D digital images
Let I be a 3D digital image, and let Q(I) be the associated cubical complex. In this paper we show how to simplify the combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P(I) with fewer cells. We introduce formulas for a diagonal approximation on a general polygon and use it to compute cup products on the cohomology H *(P(I)). The cup product encodes important geometrical information not captured by the cohomology groups. Consequently, the ring structure of H *(P(I)) is a finer topological invariant. The algorithm proposed here can be applied to compute cup products on any polyhedral approximation of an object embedded in 3-space
Geomagnetic storm dependence on the solar flare class
Content. Solar flares are often used as precursors of geomagnetic storms. In
particular, Howard and Tappin (2005) recently published in A&A a dependence
between X-ray class of solar flares and Ap and Dst indexes of geomagnetic
storms which contradicts to early published results.
Aims. We compare published results on flare-storm dependences and discuss
possible sources of the discrepancy.
Methods. We analyze following sources of difference: (1) different intervals
of observations, (2) different statistics and (3) different methods of event
identification and comparison.
Results. Our analysis shows that magnitude of geomagnetic storms is likely to
be independent on X-ray class of solar flares.Comment: 3 pages, 1 tabl
Faraday rotation in graphene
We study magneto--optical properties of monolayer graphene by means of
quantum field theory methods in the framework of the Dirac model. We reveal a
good agreement between the Dirac model and a recent experiment on giant Faraday
rotation in cyclotron resonance. We also predict other regimes when the effects
are well pronounced. The general dependence of the Faraday rotation and
absorption on various parameters of samples is revealed both for suspended and
epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small
changes and more reference
On the Discrete Unit Disk Cover Problem
Abstract. Given a set P of n points and a set D of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in P is covered by at least one disk in D or not and (ii) if so, then find a minimum cardinality subset D ∗ ⊆ D such that unit disks in D ∗ cover all the points in P. The discrete unit disk cover problem is a geometric version of the general set cover problem which is NP-hard [14]. The general set cover problem is not approx-imable within c log |P|, for some constant c, but the DUDC problem was shown to admit a constant factor approximation. In this paper, we pro-vide an algorithm with constant approximation factor 18. The running time of the proposed algorithm is O(n log n+m logm+mn). The previ-ous best known tractable solution for the same problem was a 22-factor approximation algorithm with running time O(m2n4).
Answering a Basic Objection to Bang/Crunch Holography
The current cosmic acceleration does not imply that our Universe is basically
de Sitter-like: in the first part of this work we argue that, by introducing
matter into *anti-de Sitter* spacetime in a natural way, one may be able to
account for the acceleration just as well. However, this leads to a Big Crunch,
and the Euclidean versions of Bang/Crunch cosmologies have [apparently]
disconnected conformal boundaries. As Maldacena and Maoz have recently
stressed, this seems to contradict the holographic principle. In the second
part we argue that this "double boundary problem" is a matter not of geometry
but rather of how one chooses a conformal compactification: if one chooses to
compactify in an unorthodox way, then the appearance of disconnectedness can be
regarded as a *coordinate effect*. With the kind of matter we have introduced
here, namely a Euclidean axion, the underlying compact Euclidean manifold has
an unexpectedly non-trivial topology: it is in fact one of the 75 possible
underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic"
cosmology, JHEP versio
A membraneless gas diffusion unit: Design and its application to determination of ethanol in liquors by spectrophotometric flow injection
This work presents new design of a gas diffusion unit, called 'membraneless gas diffusion (MGD) unit', which, unlike a conventional gas diffusion (GD) unit, allows selective detection of volatile compounds to be made without the need of a hydrophobic membrane. A flow injection method was developed employing the MGD unit to determine ethanol in alcoholic drinks based on the reduction of dichromate by ethanol vapor. Results clearly demonstrated that the MGD unit was suitable for determination of ethanol in beer, wine and distilled liquors. Detection limit (3S/N) of MGD unit was lower than the GD unit (GD: 0.68%, v/v; MGD: 0.27%, v/v). The MGD design makes the system more sensitive as mass transfer is more efficient than that of GD and thus, MGD can perfectly replace membrane-based designs
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
- …