14 research outputs found
Intrinsic alignment as an RSD contaminant in the DESI survey
We measure the tidal alignment of the major axes of luminous red galaxies (LRGs) from the Legacy Imaging Survey and use it to infer the artificial redshift-space distortion signature that will arise from an orientation-dependent, surface-brightness selection in the Dark Energy Spectroscopic Instrument (DESI) survey. Using photometric redshifts to downweight the shapeâdensity correlations due to weak lensing, we measure the intrinsic tidal alignment of LRGs. Separately, we estimate the net polarization of LRG orientations from DESIâs fibre-magnitude target selection to be of order 10-2 along the line of sight. Using these measurements and a linear tidal model, we forecast a 0.5 per cent fractional decrease on the quadrupole of the two-point correlation function for projected separations of 40â80 h-1 Mpc. We also use a halo catalogue from the ABACUSSUMMIT cosmological simulation suite to reproduce this false quadrupole
DESI and DECaLS (D&D): galaxyâgalaxy lensing measurements with 1 per cent survey and its forecast
The shear measurement from the Dark Energy Camera Legacy Survey (DECaLS) provides an excellent opportunity for galaxy-galaxy lensing study with the Dark Energy Spectroscopic Instrument (DESI) galaxies, given the large (âŒ9000 deg2) sky overlap. We explore this potential by combining the DESI 1 per cent survey and DECaLS Data Release 8 (DR8). With âŒ106 deg2 sky overlap, we achieve significant detection of galaxy-galaxy lensing for Bright Galaxy Survey (BGS) and luminous red galaxy (LRG) as lenses. Scaled to the full BGS sample, we expect the statistical errors to improve from to a promising level of at. This brings stronger requirements for future systematics control. To fully realize such potential, we need to control the residual multiplicative shear bias |m| < 0.006 and the bias in the mean redshift |Îz| < 0.008, requiring the introduced bias in the measurement is <0.31Ï. We also expect significant detection of galaxy-galaxy lensing with DESI LRG/emission line galaxy (ELG) full samples as lenses, and cosmic magnification of ELG through cross-correlation with low-redshift DECaLS shear. If such systematical error control can be achieved, we find the advantages of DECaLS, comparing with the Kilo Degree Survey (KiDS) and the Hyper Suprime-Cam (HSC), are at low redshift, large scale, and in measuring the shear ratio (to ÏR âŒ0.04) and cosmic magnification
The DESI One-Percent Survey: exploring a generalized SHAM for multiple tracers with the UNIT simulation
We perform SubHalo Abundance Matching (SHAM) studies on UNIT simulations with {Ï, Vceil, vsmear}-SHAM and {Ï, Vceil, fsat}-SHAM. They are designed to reproduce the clustering on 5-30 of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasi-stellar objects (QSOs) at 0.4 < z < 3.5 from DESI (Dark Energy Spectroscopic Instrument) One Percent Survey. Vceil is the incompleteness of the massive host (sub)haloes and is the key to the generalized SHAM. vsmear models the clustering effect of redshift uncertainties, providing measurements consistent with those from repeat observations. A free satellite fraction fsat is necessary to reproduce the clustering of ELGs. We find ELGs present a more complex galaxy-halo mass relation than LRGs reflected in their weak constraints on Ï. LRGs, QSOs, and ELGs show increasing Vceil values, corresponding to the massive galaxy incompleteness of LRGs, the quenched star formation of ELGs and the quenched black hole accretion of QSOs. For LRGs, a Gaussian vsmear presents a better profile for subsamples at redshift bins than a Lorentzian profile used for other tracers. The impact of the statistical redshift uncertainty on ELG clustering is negligible. The best-fitting satellite fraction for DESI ELGs is around 4 per cent, lower than previous estimations for ELGs. The mean halo mass log10((Mvir)) in for LRGs, ELGs, and QSOs are 13.16 ± 0.01, 11.90 ± 0.06, and 12.66 ± 0.45, respectively. Our generalized SHAM algorithms facilitate the production of multitracer galaxy mocks for cosmological tests
A striking relationship between dust extinction and radio detection in DESI QSOs: evidence for a dusty blow-out phase in red QSOs
We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which âŒ70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV âŒ4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional 'blow-out' phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO
The Dark Energy Spectroscopic Instrument: one-dimensional power spectrum from first Ly α forest samples with Fast Fourier Transform
We present the one-dimensional Ly α forest power spectrum measurement using the first data provided by the Dark Energy Spectroscopic Instrument (DESI). The data sample comprises 26 330 quasar spectra, at redshift z > 2.1, contained in the DESI Early Data Release and the first 2 months of the main survey. We employ a Fast Fourier Transform (FFT) estimator and compare the resulting power spectrum to an alternative likelihood-based method in a companion paper. We investigate methodological and instrumental contaminants associated with the new DESI instrument, applying techniques similar to previous Sloan Digital Sky Survey (SDSS) measurements. We use synthetic data based on lognormal approximation to validate and correct our measurement. We compare our resulting power spectrum with previous SDSS and high-resolution measurements. With relatively small number statistics, we successfully perform the FFT measurement, which is already competitive in terms of the scale range. At the end of the DESI survey, we expect a five times larger Ly α forest sample than SDSS, providing an unprecedented precise one-dimensional power spectrum measurement
Optimal 1D Lyâα forest power spectrum estimation â III. DESI early data
The 1D power spectrum P1D of the Lyâα forest provides important information about cosmological and astrophysical parameters, including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of the intergalactic medium. We present the first measurement of P1D with the quadratic maximum likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 600 quasars is already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination and noise calibration systematics with quasar spectra on the red side of the Lyâα emission line. In a companion paper, we present a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis
AuriDESI: mock catalogues for the DESI Milky Way Survey
The Dark Energy Spectroscopic Instrument Milky Way Survey (DESI MWS) will explore the assembly history of the Milky Way by characterizing remnants of ancient dwarf galaxy accretion events and improving constraints on the distribution of dark matter in the outer halo. We present mock catalogues that reproduce the selection criteria of MWS and the format of the final MWS data set. These catalogues can be used to test methods for quantifying the properties of stellar halo substructure and reconstructing the Milky Wayâs accretion history with the MWS data, including the effects of halo-to-halo variance. The mock catalogues are based on a phase-space kernel expansion technique applied to star particles in the Auriga suite of six high-resolution lambda-cold dark matter magnetohydrodynamic zoom-in simulations. They include photometric properties (and associated errors) used in DESI target selection and the outputs of the MWS spectral analysis pipeline (radial velocity, metallicity, surface gravity, and temperature). They also include information from the underlying simulation, such as the total gravitational potential and information on the progenitors of accreted halo stars. We discuss how the subset of halo stars observable by MWS in these simulations corresponds to their true content and properties. These mock Milky Ways have rich accretion histories, resulting in a large number of substructures that span the whole stellar halo out to large distances and have substantial overlap in the space of orbital energy and angular momentum
Overview of the DESI Legacy Imaging Surveys
The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the BeijingâArizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image â14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 ÎŒm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project
Recommended from our members
Constraining galaxy-halo connection with high-order statistics
We investigate using three-point statistics in constraining the galaxy-halo connection. We show that for some galaxy samples, the constraints on the halo occupation distribution parameters are dominated by the three-point function signal (over its two-point counterpart). We demonstrate this on mock catalogues corresponding to the Luminous red galaxies (LRGs), Emission-line galaxies (ELGs), and quasars (QSOs) targeted by the Dark Energy Spectroscopic Instrument (DESI) Survey. The projected three-point function for triangle sides less up to 20 h-1 Mpc measured from a cubic Gpc of data can constrain the characteristic minimum mass of the LRGs with a preci sion of 0.46 per cent. For comparison, similar constraints from the projected two-point function are 1.55 per cent. The improvements for the ELGs and QSOs targets are more modest. In the case of the QSOs, it is caused by the high shot-noise of the sample, and in the case of the ELGs, it is caused by the range of halo masses of the host haloes. The most time-consuming part of our pipeline is the measurement of the three-point functions. We adopt a tabulation method, proposed in earlier works for the two-point function, to significantly reduce the required compute time for the three-point analysis