13 research outputs found

    Holistic image reconstruction for diffusion MRI

    No full text
    \u3cp\u3eDiffusion MRI provides unique information on the microarchitecture of biological tissues. One of the major challenges is finding a balance between image resolution, acquisition duration, noise level and image artifacts. Recent methods tackle this challenge by performing super-resolution reconstruction in image space or in diffusion space, regularization of the image data or of postprocessed data (such as the orientation distribution function, ODF) along different dimensions, and/or impose data-consistency in the original acquisition space. Each of these techniques has its own advantages; however, it is rare that even a few of them are combined. Here we present a holistic framework for diffusion MRI reconstruction that allows combining the advantages of all these techniques in a single reconstruction step. In proof-of-concept experiments, we demonstrate super-resolution on HARDI shells and in image space, regularization of the ODF and of the images in spatial and angular dimensions, and data consistency in the original acquisition space. Reconstruction quality is superior to standard reconstruction, demonstrating the feasibility of combining advanced techniques into one step.\u3c/p\u3

    Holistic image reconstruction for diffusion MRI

    No full text
    Diffusion MRI provides unique information on the microarchitecture of biological tissues. One of the major challenges is finding a balance between image resolution, acquisition duration, noise level and image artifacts. Recent methods tackle this challenge by performing super-resolution reconstruction in image space or in diffusion space, regularization of the image data or of postprocessed data (such as the orientation distribution function, ODF) along different dimensions, and/or impose data-consistency in the original acquisition space. Each of these techniques has its own advantages; however, it is rare that even a few of them are combined. Here we present a holistic framework for diffusion MRI reconstruction that allows combining the advantages of all these techniques in a single reconstruction step. In proof-of-concept experiments, we demonstrate super-resolution on HARDI shells and in image space, regularization of the ODF and of the images in spatial and angular dimensions, and data consistency in the original acquisition space. Reconstruction quality is superior to standard reconstruction, demonstrating the feasibility of combining advanced techniques into one step

    q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans

    No full text
    Numerous scientific fields rely on elaborate but partly suboptimal data processing pipelines. An example is diffusion magnetic resonance imaging (diffusion MRI), a non-invasive microstructure assessment method with a prominent application in neuroimaging. Advanced diffusion models providing accurate microstructural characterization so far have required long acquisition times and thus have been inapplicable for children and adults who are uncooperative, uncomfortable, or unwell. We show that the long scan time requirements are mainly due to disadvantages of classical data processing. We demonstrate how deep learning, a group of algorithms based on recent advances in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This modification allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models. We set a new state of the art by estimating diffusion kurtosis measures from only 12 data points and neurite orientation dispersion and density measures from only 8 data points. This allows unprecedentedly fast and robust protocols facilitating clinical routine and demonstrates how classical data processing can be streamlined by means of deep learning

    Surgical Treatment of Chronic Osteomyelitis

    Get PDF
    Introduction. In this study, we analysed the results of applying various surgical methods in the combined treatment of inflammatory diseases of bones and joints.Materials and methods. The work was based on data from a multi-dimensional cohort study using non-concurrent (historical) control. A retrospective study included the analysis of medical records covering the period of 2009–2016 (1059 patients). A prospective study consisted in analysing the effectiveness of modern surgical methods in the combined treatment of inflammatory diseases of bones and joints in patients hospitalised to the Septic Surgery Department of the G.G. Kuvatov Republican Clinical Hospital (Ufa, Russia) in 2017–2018 (285 patients).Results and discussion. An analysis of the authors’ own data revealed that injuries (73.21%) and infectious complications after receiving surgery on bones and joints (15.03%) are the most common causes of osteomyelitis. In most cases, the following list of measures is optimal for diagnosing suspected osteomyelitis of various etiologies: X-ray, general clinical tests supplemented by the fistulography or CT of the affected area prior to surgery, as well as the examination of surgical material after surgery. The use of modern methods for surgical debridement and surgical repair of bone defects in the combined treatment of patients with chronic osteomyelitis can significantly reduce the relapse rate. It is recommended that patients with osteomyelitis be treated at large in-patient surgical facilities, which include a specialised department for the treatment of surgical infections and corresponding support services.Conclusion. Apparently, there is no one most optimal method for treating osteomyelitis. The optimal effect in the treatment of osteomyelitis is achieved through a personalised set of therapeutic measures using the following methods: laser vaporisation, negative-pressure wound therapy, ultrasonic cavitation in the focus of inflammation, as well as surgical repair of the post-trepanation bone defect or wound

    q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans

    No full text
    Diffusion MRI uses a multi-step data processing pipeline. With certain steps being prone to instabilities, the pipeline relies on considerable amounts of partly redundant input data, which requires long acquisition time. This leads to high scan costs and makes advanced diffusion models such as diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) inapplicable for children and adults who are uncooperative, uncomfortable or unwell. We demonstrate how deep learning, a group of algorithms in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This method allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models

    Π₯ирургичСскоС Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ хроничСского остСомиСлита

    Get PDF
    Introduction. In this study, we analysed the results of applying various surgical methods in the combined treatment of inflammatory diseases of bones and joints.Materials and methods. The work was based on data from a multi-dimensional cohort study using non-concurrent (historical) control. A retrospective study included the analysis of medical records covering the period of 2009–2016 (1059 patients). A prospective study consisted in analysing the effectiveness of modern surgical methods in the combined treatment of inflammatory diseases of bones and joints in patients hospitalised to the Septic Surgery Department of the G.G. Kuvatov Republican Clinical Hospital (Ufa, Russia) in 2017–2018 (285 patients).Results and discussion. An analysis of the authors’ own data revealed that injuries (73.21%) and infectious complications after receiving surgery on bones and joints (15.03%) are the most common causes of osteomyelitis. In most cases, the following list of measures is optimal for diagnosing suspected osteomyelitis of various etiologies: X-ray, general clinical tests supplemented by the fistulography or CT of the affected area prior to surgery, as well as the examination of surgical material after surgery. The use of modern methods for surgical debridement and surgical repair of bone defects in the combined treatment of patients with chronic osteomyelitis can significantly reduce the relapse rate. It is recommended that patients with osteomyelitis be treated at large in-patient surgical facilities, which include a specialised department for the treatment of surgical infections and corresponding support services.Conclusion. Apparently, there is no one most optimal method for treating osteomyelitis. The optimal effect in the treatment of osteomyelitis is achieved through a personalised set of therapeutic measures using the following methods: laser vaporisation, negative-pressure wound therapy, ultrasonic cavitation in the focus of inflammation, as well as surgical repair of the post-trepanation bone defect or wound.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Основной Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования послуТила ΠΎΡ†Π΅Π½ΠΊΠ° собствСнных Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² примСнСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² хирургичСского лСчСния Π² комплСксном Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ костСй ΠΈ суставов.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Ρƒ вошли Π΄Π°Π½Π½Ρ‹Π΅ Ρ€Π°Π·Π½ΠΎΠ½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ³ΠΎΡ€Ρ‚Π½ΠΎΠ³ΠΎ исслСдования с Π½Π΅ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ (историчСским) ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ. РСтроспСктивноС исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ Π°Π½Π°Π»ΠΈΠ· историй Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 2009 ΠΏΠΎ 2016 Π³. (1059 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²), проспСктивноС исслСдованиС Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎΡΡŒ Π² Π°Π½Π°Π»ΠΈΠ·Π΅ эффСктивности соврСмСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² хирургичСского лСчСния Π² комплСксном Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π³Π½ΠΎΠΉΠ½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ костСй ΠΈ суставов Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², госпитализированных Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³Π½ΠΎΠΉΠ½ΠΎΠΉ Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ Π ΠšΠ‘ ΠΈΠΌ. Π“.Π“. ΠšΡƒΠ²Π°Ρ‚ΠΎΠ²Π° (Π³. Π£Ρ„Π°) Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ 2017–2018 Π³Π³. (285Β ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π°Π½Π°Π»ΠΈΠ·Π° собствСнного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° выявлСно, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ частыми ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ развития остСомиСлитов ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π°Π²ΠΌΡ‹ (73,21Β %) ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ослоТнСния послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π½Π° костях и суставах (15,03Β %). КомплСкс диагностичСских мСроприятий ΠΏΡ€ΠΈ ΠΏΠΎΠ΄ΠΎΠ·Ρ€Π΅Π½ΠΈΠΈ Π½Π° остСомиСлитичСский процСсс, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ Π² сСбя рСнтгСнологичСскоС исслСдованиС, общСклиничСскиС Π°Π½Π°Π»ΠΈΠ·Ρ‹, Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Π΅ фистулографиСй ΠΈΠ»ΠΈ КВ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ области Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ исслСдованиСм ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π΅Π½ для диагностики остСомиСлитов Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ этиологии Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ соврСмСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² хирургичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ пластики костных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² комплСксном Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСскими остСомиСлитами позволяСт достовСрно ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ частоту Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π° заболСвания. Π›Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с остСомиСлитами ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Π΅Π΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ Π² ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… хирургичСских стационарах, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… Π² своСм составС спСциализированноС хирургичСскоС ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ для лСчСния хирургичСских ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ слуТбы.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠžΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° лСчСния остСомиСлитов, Π½Π° наш взгляд, Π½Π΅ сущСствуСт. ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ эффСкт ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ остСомиСлитов достигаСтся ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° Π»Π΅Ρ‡Π΅Π±Π½Ρ‹Ρ… мСроприятий с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², ΠΊΠ°ΠΊ лазСрная вапоризация, вакуумная тСрапия Ρ€Π°Π½, ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Π°Ρ кавитация Π² Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΎΡ‡Π°Π³Π΅, пластика посттрСпанационного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° кости ΠΈΠ»ΠΈ Ρ€Π°Π½Ρ‹
    corecore