477 research outputs found

    Incomplete oedipism and chronic suicidality in psychotic depression with paranoid delusions related to eyes

    Get PDF
    Self-enucleation or oedipism is a term used to describe self-inflicted enucleation. It is a rare form of self-mutilation, found mainly in acutely psychotic patients. We propose the term incomplete oedipism to describe patients who deliberately and severely mutilate their eyes without proper enucleation. We report the case of a 32-year-old male patient with a five-year history of psychotic depression accompanied by paranoid delusions centered around his belief that his neighbors criticized him and stared at him. A central feature of his clinical picture was an eye injury that the patient had caused by pouring molten lead into his right eye during a period of deep hopelessness and suicidality when the patient could not resolve his anhedonia and social isolation. Pharmacotherapy and psychotherapy dramatically improved his disorder

    Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool

    Get PDF
    Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants

    Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate

    Get PDF
    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of Iexp, obeys a simple exponential law with the rate constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(αIexp  +  krec) (\alpha I_{\exp } \; + \;k_{\text{rec}} ) \end{document}, in which α is a parameter relating the light intensity, measured in mW/cm2, to a corresponding theoretical rate in units of reciprocal seconds, and krec is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the α parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer–Lambert–Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation

    Immunolocalization of Influenza A Virus and Markers of Inflammation in the Human Parkinson's Disease Brain

    Get PDF
    Although much is known regarding the molecular mechanisms leading to neuronal cell loss in Parkinson's disease (PD), the initiating event has not been identified. Prevailing theories including a chemical insult or infectious agent have been postulated as possible triggers, leading to neuroinflammation. We present immunohistochemical data indicating the presence of influenza A virus within the substantia nigra pars compacta (SNpc) from postmortem PD brain sections. Influenza A virus labeling was identified within neuromelanin granules as well as on tissue macrophages in the SNpc. Further supporting a role for neuroinflammation in PD was the identification of T-lymphocytes that colocalized with an antibody to caspase-cleaved Beclin-1 within the SNpc. The presence of influenza A virus together with macrophages and T-lymphocytes may contribute to the neuroinflammation associated with this disease

    The Predictive Nature of Individual Differences in Early Associative Learning and Emerging Social Behavior

    Get PDF
    Across the first year of life, infants achieve remarkable success in their ability to interact in the social world. The hierarchical nature of circuit and skill development predicts that the emergence of social behaviors may depend upon an infant's early abilities to detect contingencies, particularly socially-relevant associations. Here, we examined whether individual differences in the rate of associative learning at one month of age is an enduring predictor of social, imitative, and discriminative behaviors measured across the human infant's first year. One-month learning rate was predictive of social behaviors at 5, 9, and 12 months of age as well as face-evoked discriminative neural activity at 9 months of age. Learning was not related to general cognitive abilities. These results underscore the importance of early contingency learning and suggest the presence of a basic mechanism underlying the ontogeny of social behaviors

    Structural basis of the filamin A actin-binding domain interaction with F-actin

    Get PDF
    Cryo-EM reconstructions were deposited in the Electron Microscopy Data Bank with the following accession numbers: F20-F-actin-FLNaABD, EMD-7833; F20-F-actin-FLNaABD-Q170P, EMD-7832; F20-F-actin-FLNaABD-E254K, EMD-8918; Krios-F-actin-FLNaABD-E254K, EMD-7831. The corresponding FLNaABD-E254K filament model was deposited in the PDB with accession number 6D8C. Source data for F-actin-targeting analyses (Figs. 2c,d,g,h, 3b,c,e,f, 4d,e, 5c,d, and 6a,b) and co-sedimentation assays (Figs. 5g and 6d) are available with the paper online. Other data are available from the corresponding author upon reasonable request. We thank Z. Razinia for generating numerous FLNa constructs, S. Wu for expertise in using the Krios microscope, J. Lees for advice on model refinement, and M. Lemmon for helpful comments in preparing the manuscript. We also thank the Yale Center for Research Computing for guidance and use of the Farnam Cluster, as well as the staff at the YMS Center for Molecular Imaging for the use of the EM Core Facility. This work was funded by grants from the National Institutes of Health (R01-GM068600 (D.A.C.), R01-NS093704 (D.A.C.), R37-GM057247 (C.V.S.), R01-GM110530 (C.V.S.), T32-GM007324, T32-GM008283) and an award from American Heart Association (15PRE25700119 (D.V.I.)).Peer reviewedPostprin

    Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the <it>NSD1 </it>gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that <it>NSD1 </it>could be involved in other cases of autism and macrocephaly.</p> <p>Methods</p> <p>We screened the <it>NSD1 </it>gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of <it>NSD1 </it>was carried out using multiplex ligation-dependent probe amplification.</p> <p>Results</p> <p>We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed.</p> <p>Conclusion</p> <p>Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for <it>NSD1 </it>mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.</p
    corecore