60 research outputs found

    Bistable, Irregular Firing and Population Oscillations in a Modular Attractor Memory Network

    Get PDF
    Attractor neural networks are thought to underlie working memory functions in the cerebral cortex. Several such models have been proposed that successfully reproduce firing properties of neurons recorded from monkeys performing working memory tasks. However, the regular temporal structure of spike trains in these models is often incompatible with experimental data. Here, we show that the in vivo observations of bistable activity with irregular firing at the single cell level can be achieved in a large-scale network model with a modular structure in terms of several connected hypercolumns. Despite high irregularity of individual spike trains, the model shows population oscillations in the beta and gamma band in ground and active states, respectively. Irregular firing typically emerges in a high-conductance regime of balanced excitation and inhibition. Population oscillations can produce such a regime, but in previous models only a non-coding ground state was oscillatory. Due to the modular structure of our network, the oscillatory and irregular firing was maintained also in the active state without fine-tuning. Our model provides a novel mechanistic view of how irregular firing emerges in cortical populations as they go from beta to gamma oscillations during memory retrieval

    Fix Your Eyes in the Space You Could Reach: Neurons in the Macaque Medial Parietal Cortex Prefer Gaze Positions in Peripersonal Space

    Get PDF
    Interacting in the peripersonal space requires coordinated arm and eye movements to visual targets in depth. In primates, the medial posterior parietal cortex (PPC) represents a crucial node in the process of visual-to-motor signal transformations. The medial PPC area V6A is a key region engaged in the control of these processes because it jointly processes visual information, eye position and arm movement related signals. However, to date, there is no evidence in the medial PPC of spatial encoding in three dimensions. Here, using single neuron recordings in behaving macaques, we studied the neural signals related to binocular eye position in a task that required the monkeys to perform saccades and fixate targets at different locations in peripersonal and extrapersonal space. A significant proportion of neurons were modulated by both gaze direction and depth, i.e., by the location of the foveated target in 3D space. The population activity of these neurons displayed a strong preference for peripersonal space in a time interval around the saccade that preceded fixation and during fixation as well. This preference for targets within reaching distance during both target capturing and fixation suggests that binocular eye position signals are implemented functionally in V6A to support its role in reaching and grasping

    A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment

    Get PDF
    Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities, or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent network model to simulate two monkey experiments in which subjects were required to make either a two-alternative forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision behaviors. The model reproduced the monkey's performance as well as single-neuron activity in the categorical discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited motion direction) when two stimuli are far apart, or vector averaging (with the population vector falling between the two directions) when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is experimentally testable. This work thus lends support to a common neurodynamic framework for both veridical judgment and categorical discrimination in perceptual decision making

    Deficits in visuo-spatial working memory, inhibition and oculomotor control in boys with ADHD and their non-affected brothers.

    Get PDF
    Few studies have assessed visuo-spatial working memory and inhibition in attention-deficit/hyperactivity disorder (ADHD) by recording saccades and consequently little additional knowledge has been gathered on oculomotor functioning in ADHD. Moreover, this is the first study to report the performance of non-affected siblings of children with ADHD, which may shed light on the familiality of deficits. A total of 14 boys with ADHD, 18 non-affected brothers, and 15 control boys aged 7-14 years, were administered a memory-guided saccade task with delays of three and seven seconds. Familial deficits were found in accuracy of visuo-spatial working memory, percentage of anticipatory saccades, and tendency to overshoot saccades relative to controls. These findings suggest memory-guided saccade deficits may relate to a familial predisposition for ADHD

    No evidence for a saccadic range effect for visually guided and memory-guided saccades in simple saccade-targeting tasks

    Get PDF
    International audienceSaccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task
    • …
    corecore