6 research outputs found

    Dark Count rate measurement in Geiger mode and simulation of a photodiode array, with CMOS 0.35 technology and transistor quenching.

    Get PDF
    International audienceSome decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD detectors fabricated in a standard CMOS technology feature both single-photon sensitivity, and excellent timing resolution, while guarantying a high integration. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. In this work, we investigate the design of SPAD detectors using the Austriamicrosystems 0.35 Όm CMOS Opto technology. A series of different SPADs has been fabricated and benchmarked in order to evaluate a future integration into a SPAD- based image sensor. The main characteristics of each SPAD operating in Geiger-mode are reported: current voltage, breakdown voltage as a function of temperature. From this first set of results, a detailed study of the Dark Count Rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5°C, the DCR of a 10Όm-photodiode is 2020 count.s-1 while it is 270 count.s-1 at T=- 40°C for a overvoltage of 800mV). We found that the adjustment of overvoltage is very sensitive and depends on the temperature. The temperature will be adjusted for the subsequent experiments. A mathematical model is presented for reproduce the DCR of a single photodiode. We simulated the noise (DCR) of array of 32x32 photo-detectors. Our results show, of course an increase of DCR of 1024, but especially, the probability of having two pulses simultaneously is 0 (without light). By studying these probabilities of occurrence of the pulses, we think we can reduce the DCR of 50% with a statistical method and reduce the crosstalk of 90%. This study is realized in order to prepare the first digital matrices sensor in Geiger mode

    Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 ”m technology

    Get PDF
    International audienceSome decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse.This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 ”m CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm2) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters1 (Silicon PhotoMultiplier – SiPM) or high resolution imagers (SPAD imager). The present work investigates SPAD geometry. MOS transistor has been used instead of resistor to adjust the quenching resistance and find optimum value. From this first set of results, a detailed study of the dark count rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5 °C, the DCR of a 10 ”m-photodiode is 2020 count s−1 while it is 270 count s−1 at T=−40 °C for a overvoltage of 800 mV). A small pixel size is desirable, because the DCR per unit area decreases with the pixel size. We also found that the adjustment of overvoltage is very sensitive and depends on the temperature. The temperature will be adjusted for the subsequent experiments

    SKiPPER - A Skeleton-Based Parallel Programming Environment for Real-Time Image Processing Applications

    No full text
    . This paper presents SKiPPER, a programming environment dedicated to the fast prototyping of parallel vision algorithms on MIMDDM platforms. SKiPPER is based upon the concept of algorithmic skeletons, i.e. higher order program constructs encapsulating recurring forms of parallel computations and hiding their low-level implementation details. Each skeleton is given an architecture-independent functional (but executable) specification and a portable implementation as a generic process template. The source program is a purely functional specification of the algorithm in which all parallelism is made explicit by means of composing instances of selected skeletons, each instance taking as parameters the application specific sequential functions written in C. SKiPPER compiles this specification down to a process graph in which nodes correspond to sequential functions and/or skeleton control processes and edges to communications. This graph is then mapped onto the target topology using a thi..

    SiPM cryogenic operation down to 77 K

    Get PDF
    International audienceSilicon PhotoMultiplier (SiPM) is composed of extremely sensitive photosensors based on the Geiger Mode Avalanche PhotoDiode (GM-APD), which operate as a digital pixel sensitive to single photons. SiPMs are being considered for applications in low temperature environments, such as noble-liquid detectors for dark matter searches or neutrino physics and GM-APD is promising technology for space Compton telescopes. While it is well known that the dark count rate, one of the main limitations of SiPM, is reduced at low temperature, a detailed study of the behavior of the device in cryogenic environment is necessary to assess its performances. In this paper, we present measurements of static parameters as breakdown voltage and quenching resistance of a commercial SiPM (Hamamatsu MPPC S10362-11-100C). Evolution of these parameters as well as junction capacitance between room temperature and 77 K is discussed

    gSRT-Soft: a generic software and some methodological guidelines to investigate implicit learning through visual-motor sequential tasks

    No full text
    Serial reaction time tasks and, more generally, the visual-motor sequential paradigms are increasingly popular tools in a variety of research domains, from studies on implicit learning in laboratory contexts to the assessment of residual learning capabilities of patients in clinical settings. A consequence of this success, however, is the increased variability in paradigms and the difficulty inherent in respecting the methodological principles that two decades of experimental investigations have made more and more stringent. The purpose of the present article is to address those problems. We present a user-friendly application that simplifies running classical experiments, but is flexible enough to permit a broad range of nonstandard manipulations for more specific objectives. Basic methodological guidelines are also provided, as are suggestions for using the software to explore unconventional directions of research. The most recent version of gSRT-Soft may be obtained for free by contacting the authors.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore