935 research outputs found

    Renormalization Group Study of Magnetic Catalysis in the 3d Gross-Neveu Model

    Full text link
    Magnetic catalysis describes the enhancement of symmetry breaking quantum fluctuations in chirally symmetric quantum field theories by the coupling of fermionic degrees of freedom to a magnetic background configuration. We use the functional renormalization group to investigate this phenomenon for interacting Dirac fermions propagating in (2+1)-dimensional spacetime, described by the Gross-Neveu model. We identify pointlike operators up to quartic fermionic terms that can be generated in the renormalization group flow by the presence of an external magnetic field. We employ the beta function for the fermionic coupling to quantitatively analyze the field dependence of the induced spectral gap. Within our pointlike truncation, the renormalization group flow provides a simple picture for magnetic catalysis.Comment: 14 pages, 6 figures, typos correcte

    Wolf Point diary| Writings, photographs, ceramics, and paintings

    Get PDF

    Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system phi Persei

    Full text link
    Stripped-envelope stars (SESs) form in binary systems after losing mass through Roche-lobe overflow. They bear astrophysical significance as sources of UV and ionizing radiation in older stellar populations and, if sufficiently massive, as stripped supernova progenitors. Binary evolutionary models predict them to be common, but only a handful of subdwarfs (i.e., SESs) with B-type companions are known. This could be the result of observational biases hindering detection, or an incorrect understanding of binary evolution. We reanalyze the well-studied post-interaction binary phi Persei. Recently, new data improved the orbital solution of the system, which contains a ~1.2 Msun SES and a rapidly rotating ~9.6 Msun Be star. We compare with an extensive grid of evolutionary models using a Bayesian approach and find initial masses of the progenitor of 7.2+/-0.4 Msun for the SES and 3.8+/-0.4 Msun for the Be star. The system must have evolved through near-conservative mass transfer. These findings are consistent with earlier studies. The age we obtain, 57+/-9 Myr, is in excellent agreement with the age of the alpha Persei cluster. We note that neither star was initially massive enough to produce a core-collapse supernova, but mass exchange pushed the Be star above the mass threshold. We find that the subdwarf is overluminous for its mass by almost an order of magnitude, compared to the expectations for a helium core burning star. We can only reconcile this if the subdwarf is in a late phase of helium shell burning, which lasts only 2-3% of the total lifetime as a subdwarf. This could imply that up to ~50 less evolved, dimmer subdwarfs exist for each system similar to phi Persei. Our findings can be interpreted as a strong indication that a substantial population of SESs indeed exists, but has so far evaded detection because of observational biases and lack of large-scale systematic searches.Comment: 11 pages, 5 figures, accepted for publication in A&

    Pressure-induced isostructural phase transition of metal-doped silicon clathrates

    Full text link
    We propose an atomistic model for the pressure-induced isostructural phase transition of metal-doped silicon clathrates, Ba8Si46 and K8Si46, that has been observed at 14 GPa and 23 GPa, respectively. The model explains successfully the equation of state, transition pressure, change of Raman spectra and dependence on the doped cations as well as the effects of substituting Si(6c) atoms with noble metals.Comment: 5 pages, two coumn, 5 figures. See http://www.iitaka.org/down.html for more informatio

    Spontaneous, collective coherence in driven, dissipative cavity arrays

    Get PDF
    We study an array of dissipative tunnel-coupled cavities, each interacting with an incoherently pumped two-level emitter. For cavities in the lasing regime, we find correlations between the light fields of distant cavities, despite the dissipation and the incoherent nature of the pumping mechanism. These correlations decay exponentially with distance for arrays in any dimension but become increasingly long ranged with increasing photon tunneling between adjacent cavities. The interaction-dominated and the tunneling-dominated regimes show markedly different scaling of the correlation length which always remains finite due to the finite photon trapping time. We propose a series of observables to characterize the spontaneous build-up of collective coherence in the system.Comment: 9 pages, 4 figures, including supplemental material (with 4 pages, 1 figure). This is a shorter version with some modifications in the supplemental material (a gap in the proof was closed and calculations significantly generalized and improved

    Design of Hybrid Conductors for Electromagnetic Forming Coils

    Get PDF
    The use of hybrid coil turns made of steel (St) and copper (Cu) is originally motivated by the increased mechanical strength compared to monolithic copper conductors. Due to the differing electrical conductivities of the two materials, the hybrid design also changes the current density distribution in the conductor cross section. This affects crucial process parameters such as the magnetic pressure and the Joule heat losses. The effect of the hybrid conductor design on the process efficiency is investigated. An electromagnetic sheet metal forming operation using a one-turn coil with rectangular cross section is used as reference case. The copper layer (CuCr1Zr) was deposited on a tool steel substrate (X40CrMoV5-1) using a selective laser melting process. The copper layer thickness is varied ranging from a monolithic steel conductor to a monolithic copper conductor. The workpiece (EN AW-5083, t_w = 1 mm) is formed through a drawing ring so that the final forming height is a qualitative measure for the process efficiency. The experimental results prove that the efficiency in case of a properly designed hybrid conductor can exceed the efficiency of a monolithic copper coil. The current density distribution in the hybrid cross section is investigated by means of numerical simulations. This way a deeper insight into the physical effects of a varying copper layer thickness is gained. The results reveal that the optimum layer thickness is not just a function of the coil cross section and the current frequency. It is also affected by the coil length and the resistance of the pulse generator

    Strong laser fields as a probe for fundamental physics

    Full text link
    Upcoming high-intensity laser systems will be able to probe the quantum-induced nonlinear regime of electrodynamics. So far unobserved QED phenomena such as the discovery of a nonlinear response of the quantum vacuum to macroscopic electromagnetic fields can become accessible. In addition, such laser systems provide for a flexible tool for investigating fundamental physics. Primary goals consist in verifying so far unobserved QED phenomena. Moreover, strong-field experiments can search for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on photon experiments in strong electromagnetic fields. The interaction of particle-physics candidates with photons and external fields can be parameterized by low-energy effective actions and typically predict characteristic optical signatures. I perform first estimates of the accessible new-physics parameter space of high-intensity laser facilities such as POLARIS and ELI.Comment: 7 pages, Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 9 September - 2 October 2008 at Frauenworth Monastery, German

    INTEGRAL observations of SS433, a supercritically accreting microquasar with hard spectrum

    Full text link
    Observations of SS433 by INTEGRAL carried out in March -- May 2003 are presented. SS433 is evidently detected on the INTEGRAL images of the corresponding sky region in the energy bands 25-50 and 50-100 keV. The precessional variability of the hard X-ray flux is clearly seen. The X-ray eclipse caused by the binary orbital motion is also detected. A possible origin of the hard continuum is briefly discussed.Comment: 5 pages, 6 figures. Accepted to A&A INTEGRAL special volum

    Exact flow equation for bound states

    Full text link
    We develop a formalism to describe the formation of bound states in quantum field theory using an exact renormalization group flow equation. As a concrete example we investigate a nonrelativistic field theory with instantaneous interaction where the flow equations can be solved exactly. However, the formalism is more general and can be applied to relativistic field theories, as well. We also discuss expansion schemes that can be used to find approximate solutions of the flow equations including the essential momentum dependence.Comment: 22 pages, references added, published versio

    Bouwen op het platteland : ontwikkeling bebouwing stedendriehoek Apeldoorn-Deventer-Zutphen 1970-2000

    Get PDF
    Voor het project 'evaluatie nota ruimte' (Natuurplanbureau) wordt onderzocht wat de landschappelijke effecten zijn bij bebouwing op het platteland voor de lokale woningbehoeft
    • …
    corecore