28 research outputs found

    LIMITED ANTIBODY EVIDENCE OF EXPOSURE TO MYCOBACTERIUM BOVIS IN FERAL SWINE (\u3ci\u3eSUS SCROFA\u3c/i\u3e) IN THE USA

    Get PDF
    Bovine tuberculosis is a chronic disease of cattle (Bos taurus) caused by the bacterium Mycobacterium bovis. Efforts have been made in the US to eradicate the disease in cattle, but spillover into wildlife and subsequent spillback have impeded progress in some states. In particular, infection in white-tailed deer (Odocoileus virginianus) has been followed by infection in cattle in some Midwestern states. Infection has also been documented in feral swine (Sus scrofa) on the Hawaiian island of Molokai and in various European countries, but no large-scale survey of antibody exposure to the bacteria has been conducted in feral swine in the US. We tested 488 sera from feral swine collected near previously documented outbreaks of bovine tuberculosis in cattle and captive cervids, in addition to 2,237 feral swine sera collected across the US from 1 October 2013 to 30 September 2014. While all but one of the samples were antibody negative, the results are important for establishing baseline negative data since feral swine are capable reservoirs and could be implicated in future outbreaks of the disease

    Bourbon Virus in Wild and Domestic Animals, Missouri, USA, 2012–2013

    Get PDF
    Bourbon virus (BRBV) was first isolated from a febrile patient with a history of tick bites in Bourbon County, Kansas, USA; the patient later died from severe illness in 2014 (1). Several additional human BRBV infections were reported subsequently from the midwestern and southern United States (2). BRBV belongs to the family Orthomyxoviridae, genus Thogotovirus, which is distributed worldwide and includes Araguari, Aransas Bay, Dhori, Jos, Thogoto, and Upolu viruses (1,3). Thogoto and Dhori viruses have been associated with human disease (4–6). Viruses within the genus Thogotovirus have been associated with hard or soft ticks (7). Recent studies suggest that the lone star tick (Amblyomma americanum) is involved with BRBV transmission (2,3,8). These ticks feed primarily on mammals, which might play a role in BRBV ecolog

    Extended Viral Shedding of a Low Pathogenic Avian Influenza Virus by Striped Skunks (Mephitis mephitis)

    Get PDF
    Background: Striped skunks (Mephitis mephitis) are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. Methodology/Principal Findings: Striped skunks were experimentally infected with a low pathogenic (LP) H4N6 avian influenza virus (AIV) and monitored for 20 days post infection (DPI). All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum #106.02 PCR EID50 equivalent/mL and #105.19 PCR EID50 equivalent/mL, respectively). Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. Conclusions/Significance: These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations

    Comparative susceptibility of eastern cottontails and New Zealand white rabbits to classical rabbit haemorrhagic disease virus (RHDV) and RHDV2

    Get PDF
    Rabbit haemorrhagic disease virus (RHDV) is associated with high morbidity and mortality in the European rabbit (Oryctolagus cuniculus). In 2010, a genetically distinct RHDV named RHDV2 emerged in Europe and spread to many other regions, including North America in 2016. Prior to this study it was unknown if eastern cottontails (ECT(s); Sylvilagus floridanus), one of the most common wild lagomorphs in the United States, were susceptible to RHDV2. In this study, 10 wild-caught ECTs and 10 New Zealand white rabbits (NZWR(s); O. cuniculus) were each inoculated orally with either RHDV (RHDVa/GI.1a; n = 5 per species) or RHDV2 (a recombinant GI.1bP-GI.2; n = 5 per species) and monitored for the development of disease. Three of the five ECTs that were infected with RHDV2 developed disease consistent with RHD and died at 4 and 6 days post-inoculation (DPI). The RHDV major capsid protein/antigen (VP60) was detected in the livers of three ECTs infected with RHDV2, but none was detected in the ECTs infected with RHDV. Additionally, RHD viral RNA was detected in the liver, spleen, intestine and blood of ECTs infected with RHDV2, but not in the ECTs infected with RHDV. RHD viral RNA was detected in urine, oral swabs and rectal swabs in at least two of five ECTs infected with RHDV2. One ECT inoculated with RHDV2 seroconverted and developed a high antibody titre by the end of the experimental period (21 DPI). ECTs inoculated with the classic RHDV did not seroconvert. In comparison, NZWRs inoculated with RHDV2 exhibited high mortality (five of five) at 2 DPI and four of five NZWRs inoculated with RHDV either died or were euthanized at 2 DPI indicating both of these viruses were highly pathogenic to this species. This experiment indicates that ECTs are susceptible to RHDV2 and can shed viral RNA, thereby suggesting this species could be involved in the epidemiology of this virus

    West Nile Virus Isolated from a Virginia Opossum (Didelphis virginiana) in Northwestern Missouri, USA, 2012

    Get PDF
    We describe the isolation of West Nile virus (WNV; Flaviviridae, Flavivirus) from blood of a Virginia opossum (Didelphis virginiana) collected in northwestern Missouri, USA in August 2012. Sequencing determined that the virus was related to lineage 1a WNV02 strains. We discuss the role of wildlife in WNV disease epidemiology

    Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    Get PDF
    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented

    The Role of the National Wildlife Disease Program in Wildlife Disease Surveillance and Emergency Response

    Get PDF
    The National Wildlife Disease Program (NWDP), overseen by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services (WS), was established in 2003 to develop a nationally coordinated wildlife disease surveillance and emergency response system. Since its inception, the NWDP has developed collaborations with over 200 national and international partners. The national partners include state, tribal, federal, and private organizations. These partnerships have resulted in surveillance and management of over 100 pathogens, toxins, and disease syndromes affecting wildlife, domestic animals, and humans. Several of these pathogens, including avian influenza, plague, tularemia, bluetongue, and 10 pathogens carried by feral swine, are monitored on a national or regional scale. The NWDP maintains an archive of select wildlife disease samples. Archived samples are available to scientists at universities and other entities with approved research protocols. The NWDP also serves as Wildlife Services’ primary emergency response unit. The program’s wildlife disease biologists are trained as all-hazard first responders, and the national office coordinates training and mobilization of these and other personnel. Internationally, the NWDP has worked with over 30 countries, developing close relationships with many organizations. This paper provides an overview of the NWDP structure and its activities. Programmatic efforts to address highly pathogenic avian influenza (HPAI) H5N1 are presented as an example of a coordinated national response when a disease risk posed by wildlife presents a potential threat to agriculture or humans

    PATHOLOGY OF BRUCELLOSIS IN BISON FROM YELLOWSTONE NATIONAL PARK

    Get PDF
    Between February 1995 and June 1999, specimens from seven aborted bison (Bison bison) fetuses or stillborn calves and their placentas, two additional placentas, three dead neonates, one 2-wk-old calf, and 35 juvenile and adult female bison from Yellowstone National Park (USA) were submitted for bacteriologic and histopathologic examination. One adult animal with a retained placenta had recently aborted. Serum samples from the 35 juvenile and adult bison were tested for Brucella spp. antibodies. Twenty-six bison, including the cow with the retained placenta, were seropositive, one was suspect, and eight were seronegative. Brucella abortus biovar 1 was isolated from three aborted fetuses and associated placentas, an additional placenta, the 2- wk-old calf, and 11 of the seropositive female bison including the animal that had recently aborted. Brucella abortus biovar 2 was isolated from one additional seropositive adult female bison. Brucella abortus was recovered from numerous tissue sites from the aborted fetuses, placentas and 2-wk-old calf. In the juvenile and adult bison, the organism was more frequently isolated from supramammary (83%), retropharyngeal (67%), and iliac (58%) lymph nodes than from other tissues cultured. Cultures from the seronegative and suspect bison were negative for B. abortus. Lesions in the B. abortus-infected, aborted placentas and fetuses consisted of necropurulent placentitis and mild bronchointerstitial pneumonia. The infected 2-wk-old calf had bronchointerstitial pneumonia, focal splenic infarction, and purulent nephritis. The recently-aborting bison cow had purulent endometritis and necropurulent placentitis. Immunohistochemical staining of tissues from the culture-positive aborted fetuses, placentas, 2-wk-old calf, and recently-aborting cow disclosed large numbers of B. abortus in placental trophoblasts and exudate, and fetal and calf lung. A similar study with the same tissue collection and culture protocol was done using six seropositive cattle from a B. abortus-infected herd in July and August, 1997. Results of the bison and cattle studies were similar

    Detection of PrP\u3csup\u3eCWD\u3c/sup\u3e in postmortem rectal lymphoid tissues in Rocky Mountain elk (\u3ci\u3eCervus elaphus nelsoni\u3c/i\u3e) infected with chronic wasting disease

    Get PDF
    Preclinical diagnostic tests for transmissible spongiform encephalopathies have been described for mule deer (Odocoileus hemionus), using biopsy tissues of palatine tonsil, and for sheep, using lymphoid tissues from palatine tonsil, third eyelid, and rectal mucosa. The utility of examining the rectal mucosal lymphoid tissues to detect chronic wasting disease (CWD) was investigated in Rocky Mountain elk (Cervus elaphus nelsoni), a species for which there is not a live-animal diagnostic test. Postmortem rectal mucosal sections were examined from 308 elk from two privately owned herds that were depopulated. The results of the postmortem rectal mucosal sections were compared to immunohistochemical staining of the brainstem, retropharyngeal lymph nodes, and palatine tonsil. Seven elk were found positive using the brainstem (dorsal motor nucleus of the vagus nerve), retropharyngeal lymph nodes, and palatine tonsil. Six of these elk were also found positive using postmortem rectal mucosal sections. The remaining 301 elk in which CWD-associated abnormal isoform of the prion protein (PrPCWD) was not detected in the brainstem and cranial lymphoid tissues were also found to be free of PrPCWD when postmortem rectal mucosal sections were examined. The use of rectal mucosal lymphoid tissues may be suitable for a live-animal diagnostic test as part of an integrated management strategy to limit CWD in elk

    LIMITED ANTIBODY EVIDENCE OF EXPOSURE TO MYCOBACTERIUM BOVIS IN FERAL SWINE (\u3ci\u3eSUS SCROFA\u3c/i\u3e) IN THE USA

    Get PDF
    Bovine tuberculosis is a chronic disease of cattle (Bos taurus) caused by the bacterium Mycobacterium bovis. Efforts have been made in the US to eradicate the disease in cattle, but spillover into wildlife and subsequent spillback have impeded progress in some states. In particular, infection in white-tailed deer (Odocoileus virginianus) has been followed by infection in cattle in some Midwestern states. Infection has also been documented in feral swine (Sus scrofa) on the Hawaiian island of Molokai and in various European countries, but no large-scale survey of antibody exposure to the bacteria has been conducted in feral swine in the US. We tested 488 sera from feral swine collected near previously documented outbreaks of bovine tuberculosis in cattle and captive cervids, in addition to 2,237 feral swine sera collected across the US from 1 October 2013 to 30 September 2014. While all but one of the samples were antibody negative, the results are important for establishing baseline negative data since feral swine are capable reservoirs and could be implicated in future outbreaks of the disease
    corecore