10,980 research outputs found

    Estimation of Kalman filter model parameters from an ensemble of tests

    Get PDF
    A methodology for estimating initial mean and covariance parameters in a Kalman filter model from an ensemble of nonidentical tests is presented. In addition, the problem of estimating time constants and process noise levels is addressed. Practical problems such as developing and validating inertial instrument error models from laboratory test data or developing error models of individual phases of a test are generally considered

    Convex Functions and Spacetime Geometry

    Full text link
    Convexity and convex functions play an important role in theoretical physics. To initiate a study of the possible uses of convex functions in General Relativity, we discuss the consequences of a spacetime (M,gμν)(M,g_{\mu \nu}) or an initial data set (Σ,hij,Kij)(\Sigma, h_{ij}, K_{ij}) admitting a suitably defined convex function. We show how the existence of a convex function on a spacetime places restrictions on the properties of the spacetime geometry.Comment: 26 pages, latex, 7 figures, improved version. some claims removed, references adde

    The relationship between cognitive variables and offending behaviour in adults with intellectual disabilities : a systematic review

    Get PDF
    Background Interventions for offenders with intellectual disabilities (ID) have used cognitive variables as measures of treatment outcome. However, the relevance of cognitive variables to offending in people with intellectual disabilities is unclear. This review aimed to evaluate the evidence for a relationship between cognitive variables and offending in people with intellectual disabilities. Method A systematic search identified studies comparing offenders and non‐offenders with intellectual disabilities on an aspect of cognition. Seven cognitive variables were found and compared across 15 studies. These were appraised for their quality using an adapted quality appraisal checklist. The reliability and validity of cognitive measures were also considered. Results and conclusions Other than for cognitive distortions, the evidence for a relationship between cognitive variables and offending in people with intellectual disabilities is currently limited due to methodological weaknesses and the small number of studies assessing each variable. Clinicians are advised to focus on cognitive distortions until better evidence is available

    Struggling and juggling: a comparison of assessment loads in research and teaching-intensive universities

    Get PDF
    In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research-and teaching intensive universities. We clarify the concept of ‘assessment load’ in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students’ approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that ‘more’ is always better, proposing that lighter assessment loads may make room for ‘slow’ and deep learning

    Exact Solution of the Infinite-Range Quantum Mattis Model

    Full text link
    We have solved the quantum version of the Mattis model with infinite-range interactions. A variational approach gives the exact solution for the infinite-range system, in spite of the non-commutative nature of the quantum spin components; this implies that quantum effects are not predominant in determining the macroscopic properties of the system. Nevertheless, the model has a surprisingly rich phase behaviour, exhibiting phase diagrams with tricritical, three-phase and critical end points.Comment: 14 pages, 11 figure

    The Flexi Planar Fuel Cell

    Get PDF
    The Flexi Planar fuel cell is a new type of lightweight polymer electrolyte fuel cell design. The approach utilises standard, reliable and low cost printed circuit board fabrication processes. An iterative approach is adopted and feasibility along with excellent test characteristics for short modules have been successfully demonstrated

    All-Optical Switching with Transverse Optical Patterns

    Full text link
    We demonstrate an all-optical switch that operates at ultra-low-light levels and exhibits several features necessary for use in optical switching networks. An input switching beam, wavelength λ\lambda, with an energy density of 10210^{-2} photons per optical cross section [σ=λ2/(2π)\sigma=\lambda^2/(2\pi)] changes the orientation of a two-spot pattern generated via parametric instability in warm rubidium vapor. The instability is induced with less than 1 mW of total pump power and generates several μ\muWs of output light. The switch is cascadable: the device output is capable of driving multiple inputs, and exhibits transistor-like signal-level restoration with both saturated and intermediate response regimes. Additionally, the system requires an input power proportional to the inverse of the response time, which suggests thermal dissipation does not necessarily limit the practicality of optical logic devices

    A novel method for evaluating the critical nucleus and the surface tension in systems with first order phase transition

    Full text link
    We introduce a novel method for calculating the size of the critical nucleus and the value of the surface tension in systems with first order phase transition. The method is based on classical nucleation theory, and it consists in studying the thermodynamics of a sphere of given radius embedded in a frozen metastable surrounding. The frozen configuration creates a pinning field on the surface of the free sphere. The pinning field forces the sphere to stay in the metastable phase as long as its size is smaller than the critical nucleus. We test our method in two first-order systems, both on a two-dimensional lattice: a system where the parameter tuning the transition is the magnetic field, and a second system where the tuning parameter is the temperature. In both cases the results are satisfying. Unlike previous techniques, our method does not require an infinite volume limit to compute the surface tension, and it therefore gives reliable estimates even by using relatively small systems. However, our method cannot be used at, or close to, the critical point, i.e. at coexistence, where the critical nucleus becomes infinitely large.Comment: 12 pages, 15 figure

    Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering

    Full text link
    Developing an expression of resonant x-ray scattering (RXS) amplitude which is convenient for investigating the contributions from the higher rank tensor on the basis of a localized electron picture, we analyze the RXS spectra from the magnetic phases of Ho near the M4,5M_{4,5} absorption edges. At the M5M_5 edge in the uniform helical phase, the calculated spectra of the absorption coefficient, the RXS intensities at the first and second satellite spots capture the properties the experimental data possess, such as the spectral shapes and the peak positions. This demonstrates the plausibility of the adoption of the localized picture in this material and the effectiveness of the spectral shape analysis. The latter point is markedly valuable since the azimuthal angle dependence, which is one of the most useful informations RXS can provides, is lacking in the experimental conditions. Then, by focusing on the temperature dependence of the spectral shape at the second satellite spot, we expect that the spectrum is the contribution of the pure rank two profile in the uniform helical and the conical phases while that is dominated by the rank one profile in the intermediate temperature phase, so-called spin slip phase. The change of the spectral shape as a function of temperature indicates a direct evidence of the change of magnetic structures undergoing. Furthermore, we predict that the intensity, which is the same order observed at the second satellite spot, is expected at the fourth satellite spot from the conical phase in the electric dipolar transition.Comment: 24 pages, 5 figure

    Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    Get PDF
    We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape
    corecore