6,599 research outputs found
Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility
CIRCE is a leadâbismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system. A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of âSapienzaâ University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermalâhydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results
Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility
In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermofluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay
Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation
Unveiling the inner morphology and gas kinematics of NGC 5135 with ALMA
The local Seyfert 2 galaxy NGC5135, thanks to its almost face-on appearance,
a bulge overdensity of stars, the presence of a large-scale bar, an AGN and a
Supernova Remnant, is an excellent target to investigate the dynamics of
inflows, outflows, star formation and AGN feedback. Here we present a
reconstruction of the gas morphology and kinematics in the inner regions of
this galaxy, based on the analysis of Atacama Large Millimeter Array (ALMA)
archival data. To our purpose, we combine the available 100 pc resolution
ALMA 1.3 and 0.45 mm observations of dust continuum emission, the spectroscopic
maps of two transitions of the CO molecule (tracer of molecular mass in star
forming and nuclear regions), and of the CS molecule (tracer of the dense star
forming regions) with the outcome of the SED decomposition. By applying the
BAROLO software (3D-Based Analysis of Rotating Object via Line
Observations), we have been able to fit the galaxy rotation curves
reconstructing a 3D tilted-ring model of the disk. Most of the observed
emitting features are described by our kinematic model. We also attempt an
interpretation for the emission in few regions that the axisymmetric model
fails to reproduce. The most relevant of these is a region at the northern edge
of the inner bar, where multiple velocity components overlap, as a possible
consequence of the expansion of a super-bubble.Comment: 15 pages, 13 figures, resubmitted to MNRAS after moderate revision
Floating-bending tensile-integrity structures
This is a conceptual work about the form-finding of a hybrid tensegrity structure. The structure was obtained from the combination of arch-supported membrane systems and diamond-type tensegrity systems. By combining these two types of structures, the resulting system features the âtensile-integrityâ property of cables and membrane together with what we call âfloating-bendingâ of the arches, a term which is intended to recall the words âfloating-compressionâ introduced by Kenneth Snelson, the father of tensegrities. Two approaches in the form-finding calculations were followed, the Matlab implementation of a simple model comprising standard constant-stress membrane/cable elements together with the so-called stick-andspring elements for the arches, and the analysis with the commercial software WinTess, used in conjunction with Rhino and Grasshopper. The case study of a T3 floatingbending tensile-integrity structure was explored, a structure that features a much larger enclosed volume in comparison to conventional tensegrity prisms. The structural design of an outdoor pavilion of 6 m in height was carried out considering ultimate and service limit states. This study shows that floating-bending structures are feasible, opening the way to the introduction of suitable analysis and optimization procedures for this type of structure
System thermal-hydraulic modelling of the phénix dissymmetric test benchmark
Phénix is a French pool-type sodium-cooled prototype reactor; before the definitive shutdown, occurred in 2009, a final set of experimental tests are carried out in order to increase the knowledge on the operation and the safety aspect of the pool-type liquid metal-cooled reactors. One of the experiments was the Dissymmetric End-of-Life Test which was selected for the validation benchmark activity in the frame of SESAME project. The computer code validation plays a key role in the safety assessment of the innovative nuclear reactors and the Phénix dissymmetric test provides useful experimental data to verify the computer codes capability in the asymmetric thermal-hydraulic behaviour into a pool-type liquid metal-cooled reactor. This paper shows the comparison of the outcomes obtained with six different System Thermal-Hydraulic (STH) codes: RELAP5-3D©, SPECTRA, ATHLET, SAS4A/SASSYS-1, ASTEC-Na and CATHARE. The nodalization scheme of the reactor was individually achieved by the participants; during the development of the thermal-hydraulic model, the pool nodalization methodology had a special attention in order to investigate the capability of the STH codes to reproduce the dissymmetric effects which occur in each loop and into pools, caused by the azimuthal asymmetry of the boundary conditions. The modelling methodology of the participants is discussed and the main results are compared in this paper to obtain useful guide lines for the future modelling of innovative liquid metal pool-type reactors
Heat transfer at nanoscale and boundary conditions
A model of nonlocal heat transfer at nanoscale in rigid bodies is considered. Depending on the relevance of the particular interactionâs mechanism between the heat carriers and the lateral walls, three different strategies for the setting-up of the boundary conditions are analyzed, and the consequent forms of the basic fields have been obtained, as well. From the physical point of view, the possible influence of those interactions on the unknown fields is pointed out. From the mathematical point of view, instead, the well-posedness of the problem is shown
Post-test simulations for the NACIE-UP benchmark by STH codes
This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermalâhydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the âSapienzaâ University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed
Physical properties of high-mass clumps in different stages of evolution
(Abridged) Aims. To investigate the first stages of the process of high-mass
star formation, we selected a sample of massive clumps previously observed with
the SEST at 1.2 mm and with the ATNF ATCA at 1.3 cm. We want to characterize
the physical conditions in such sources, and test whether their properties
depend on the evolutionary stage of the clump.
Methods. With ATCA we observed the selected sources in the NH3(1,1) and (2,2)
transitions and in the 22 GHz H2O maser line. Ammonia lines are a good
temperature probe that allow us to accurately determine the mass and the
column-, volume-, and surface densities of the clumps. We also collected all
data available to construct the spectral energy distribution of the individual
clumps and to determine if star formation is already occurring, through
observations of its most common signposts, thus putting constraints on the
evolutionary stage of the source. We fitted the spectral energy distribution
between 1.2 mm and 70 microns with a modified black body to derive the dust
temperature and independently determine the mass.
Results. The clumps are cold (T~10-30 K), massive (M~10^2-10^3 Mo), and dense
(n(H2)>~10^5 cm^-3) and they have high column densities (N(H2)~10^23 cm^-2).
All clumps appear to be potentially able to form high-mass stars. The most
massive clumps appear to be gravitationally unstable, if the only sources of
support against collapse are turbulence and thermal pressure, which possibly
indicates that the magnetic field is important in stabilizing them.
Conclusions. After investigating how the average properties depend on the
evolutionary phase of the source, we find that the temperature and central
density progressively increase with time. Sources likely hosting a ZAMS star
show a steeper radial dependence of the volume density and tend to be more
compact than starless clumps.Comment: Published in A&A, Vol. 556, A1
Geotechnical and historical aspects on the collapse of the Tiber embankment walls in the centre of Roma (1870â1900)
This paper deals with the issues related to the construction of the Tiberâs embankment
walls between years 1870â1926. The embankment walls (muraglioni) were designed by
Raffaele Canevari to mitigate the effects of the river inundation in the city centre of Roma. After
the flood of December 1900, several portions of the Anguillara and Alberteschi sections collapsed.
The aim of this work is to investigate whether the causes of the collapse can be traced back to
design approaches of the time, lacking from a point of view of the hydro-mechanical interaction
of the soil in the evaluation of the total earth pressure. In particular, designed calculations are
also revised accounting for more advance soil phenomena laws, based on Terzaghi effective stress
and the effects of scouring and erosion. Some assumptions have been made on the mechanical
characteristics of the backfill soils and on the relying on foundation materials
- âŠ