123 research outputs found

    Real-time and portable microwave imaging system

    Get PDF
    Microwave and millimeter wave imaging has shown tremendous utility in a wide variety of applications. These techniques are primarily based on measuring coherent electric field distribution on the target being imaged. Mechanically scanned systems are the simple and low cost solution in microwave imaging. However, these systems are typically bulky and slow. This dissertation presents a design for a 2D switched imaging array that utilizes modulated scattering techniques for spatial multiplexing of the signal. The system was designed to be compact, coherent, possessing high dynamic range, and capable of video frame rate imaging. Various aspects of the system design were optimized to achieve the design objectives. The 2D imaging system as designed and described in this dissertation utilized PIN diode loaded resonant elliptical slot antennas as array elements. The slot antennas allow for incorporating the switching into the antennas thus reducing the cost and size of the array. Furthermore, these slots are integrated in a simple low loss waveguide network. Moreover, the sensitivity and dynamic range of this system is improved by utilizing a custom designed heterodyne receiver and matched filter. This dissertation also presents an analysis on the properties of this system. The performance of the multiplexing scheme, the noise floor and the dynamic range of the receivers are investigated. Furthermore, sources of errors such as mutual coupling and array response dispersion are also investigated. Finally, utilizing this imaging system for various applications such as 2D electric field mapping, scatterer localization, and nondestructive imaging is demonstrated --Abstract, Page iii

    Multimodal Solution for a Rectangular Waveguide Radiating into a Multilayered Dielectric Structure and its Application for Dielectric Property and Thickness Evaluation

    Get PDF
    Open-ended rectangular waveguides are widely used for microwave and millimeter wave nondestructive testing applications. Applications have included detecting disbonds and delaminations in multilayered composite structures, thickness evaluation of dielectric sheets and coatings on metal substrates, etc. When inspecting a complex multilayered composite structure, made of generally lossy dielectric layers with arbitrary thicknesses and backing, the dielectric properties of a particular layer within the structure is of particular interest, such being health monitoring of structures such as radomes. The same is also true where one may be interested in the thickness or more importantly thickness variation of a particular layer within such structures. An essential tool for estimating the dielectric constant or thickness is an accurate model for simulating reflection coefficient at the aperture of the probing open-ended waveguide. One issue of interest is that radiation from open-ended rectangular waveguides into layered dielectric structures has been considered only when accounting for the dominant waveguide mode. However, when using these models for recalculating dielectric constant or thickness, the results may not be accurate (depending on the measurement requirements). To this end, this paper provides an accurate model for the reflection coefficient which also accounts for the effect of higher-order modes. Finally, the potential of this model for accurately estimating dielectric constant is shown

    Method and Apparatus for Nondestructive Sample Inspection

    Get PDF
    An apparatus for inspecting a sample for defects includes a signal generator for generating a signal and a device for splitting the signal into two separate signals which have substantially equal phase and magnitude. A sensor radiates the two signals on the sample and receives the two signals reflected from the sample. A device is provided for determining a difference between the two signals reflected from the sample without unwanted influence of variations of distance between the sensor and sample, and reflections from nearby sample edges and boundaries. A defect is determined to exist when a difference is found between the two reflected signals

    Near-Field Millimeter-Wave Imaging of Exposed and Covered Fatigue Cracks

    Get PDF
    In this paper, the efficacy of near-field millimeter-wave nondestructive techniques, using open-ended flange-mounted rectangular waveguide probes, for extracting information of 3-D crack area deformation (i.e., in-plane and out-of-plane deformation) is demonstrated. It is shown that this information can be obtained from indications of unique interference patterns that are generated between the probe and the metal surface during the raster scan of a surface-breaking exposed and covered fatigue crack using a phase-sensitive reflectometer

    Waveguide Probe for Nondestructive Material Characterization

    Get PDF
    An open-ended waveguide probe including a finite flange extending outwardly and functioning as an infinite flange. A signal source provides a microwave signal to the waveguide, which in turn transmits microwave electromagnetic energy incident upon an object to be tested. The finite flange at the waveguide\u27s aperture is shaped to reduce scattering of the electromagnetic field reflected from the object and received by the aperture. The probe is adapted for coupling to a receiver for sampling the reflected electromagnetic field received by the aperture and the receiver is adapted for coupling to a processor for determining at least one material characteristic of the object based on sampled electromagnetic field reflected from the object

    Multimodal Solution for a Waveguide Radiating into Multilayered Structures -- Dielectric Properties and Thickness Evaluation

    Get PDF
    Open-ended rectangular waveguides are widely used for microwave and millimeter-wave nondestructive testing (NDT) applications, such as detecting disbond and delamination in multilayered composite structures, thickness evaluation of dielectric sheets and coatings on metal substrates, etc. when inspecting a complex multilayered composite structure that is made of generally lossy dielectric layers with arbitrary thicknesses and backing, the dielectric properties of a particular layer may be of particular interest (e.g., radome inspection). The same is also true when one is interested in the thickness, or, more importantly, thickness variation, of a particular layer within such complex structures. An essential tool for closely estimating the complex permittivity and/or thickness is an accurate forward electromagnetic model for simulating the reflection coefficient at the aperture of the probing open-ended waveguide. To this end, this paper provides a full-wave accurate forward model for calculating the reflection coefficient from a generally lossy multilayered composite structure possessing an arbitrary number of layers and respective thicknesses while accounting for the influence of higher order modes. This model is subsequently validated through comparisons with a commercial numerical tool and actual measurements. Furthermore, a measurement model is provided, which results in an iterative inverse technique for estimating the complex permittivity and thickness of a dielectric layer. Subsequently, this technique is applied to the measured reflection coefficients of several structures. To evaluate the accuracy of this technique, an analysis on its sensitivity to various sources of errors, and, most importantly, the effect of a finite flange size, is also demonstrated by using the simulated data. Finally, the potential of this model to accurately estimate the thickness of an individual layer, which represents a thin disbond, in a multilayered composite structure is presented

    Free-Hand Scanning and Imaging

    Get PDF
    Wideband synthetic aperture radar (SAR) imaging. A probe transmits a signal through its aperture incident to an object located in a medium of interest remotely from the probe. The probe receives through the aperture a plurality of nonuniformly sampled reflected signals from the object as the probe moves in a measurement plane located a predetermined distance from the object. A processor executes a SAR-based reconstruction algorithm to generate an image

    Microwave Reflectometry for Physical Inspections

    Get PDF
    Utilizing microwave reflections to compare a reference device with counterfeit and/or aging devices under test. The reflection from the device under test varies based on certain properties, which results in each device having a unique and intrinsic electromagnetic signature. Comparisons of the electromagnetic signature of the device under test to the electromagnetic signature of a reference device enable evaluating the acceptability of the device under test

    Microwave Imaging for Corroded Rebars and Delamination in Concrete Structures

    Get PDF
    Corrosion of embedded steel reinforcement bars (rebars) in concrete leads to concrete cracking and delamination, which in turn leads to increased salt and moisture permeation and further damage. This study aims to evaluate the effectiveness of microwave imaging for the characterization of this corrosionand delaminationof steel rebar embedded in concrete

    Monitoring of Cure State through the Use of Microwaves

    Get PDF
    A method of manufacturing a tire is provided that includes curing the tire (10) in a curing press (12) and applying microwave energy at a given frequency band into the tire. The interaction between the microwave energy and the tire is monitored to obtain a complex reflection coefficient. A root-mean-squared error is calculated using the measured complex reflection coefficient and a reference reflection coefficient. The reference reflection coefficient is from a fully cured tire made from the same material as the tire. Continuous monitoring of the interaction takes place to obtain the complex reflection coefficient along with continuous calculation of the root-mean-squared error at different times during the curing of the tire in the curing press. The calculated root-mean-squared errors are used to determine whether to stop the curing of the tire in the curing press
    • …
    corecore