152 research outputs found

    Kinematics, turbulence and evolution of planetary nebulae

    Get PDF
    This paper discusses the location of a sample of planetary nebulae on the HR diagram. We determine the internal velocity fields of 14 planetary nebulae from high-resolution echelle spectroscopy, with the help of photoionization models. The mass averaged velocity is shown to be a robust, simple parameter describing the outflow. The expansion velocity and radius are used to define the dynamical age; together with the stellar temperature, this gives a measurement of the luminosity and core mass of the central star. The same technique is applied to other planetary nebulae with previously measured expansion velocities, giving a total sample of 73 objects. The objects cluster closely around the Schoenberner track of 0.61 M_sun, with a very narrow distribution of core masses. The masses are higher than found for local white dwarfs. The luminosities determined in this way tend to be higher by a factor of a few than those derived from the nebular luminosities. The discrepancy is highest for the hottest (most evolved) stars. We suggest photon leakage as the likely cause. The innermost regions of the non-[WC] nebulae tend to show strong acceleration. Together with the acceleration at the ionization front, the velocity field becomes 'U'-shaped. The presence of strong turbulent motions in [WC] nebulae is confirmed. Except for this, we find that the [WC] stars evolve on the same tracks as non-[WC] stars

    White dwarf masses derived from planetary nebulae modelling

    Full text link
    We compare the mass distribution of central stars of planetary nebulae (CSPN) with those of their progeny, white dwarfs (WD). We use a dynamical method to measure masses with an uncertainty of 0.02 M_\odot. The CSPN mass distribution is sharply peaked at 0.61M0.61 \rm M_\odot. The WD distribution peaks at lower masses (0.58M0.58 \rm M_\odot) and shows a much broader range of masses. Some of the difference can be explained if the early post-AGB evolution is faster than predicted by the Bl\"ocker tracks. Between 30 and 50 per cent of WD may avoid the PN phase because of too low mass. However, the discrepancy cannot be fully resolved and WD mass distributions may have been broadened by observational or model uncertainties.Comment: 4 pages, accepted for A&A Letter

    Emission line profiles as a probe of physical conditions in planetary nebulae

    Full text link
    We present an analysis of physical conditions in planetary nebulae (PNe) in terms of collisionally-excited line (CEL) and optical-recombination line (ORL) profiles. We aim to investigate whether line profiles could be used to study the long-standing CEL/ORL abundance-discrepancy problem in nebular astrophysics. Using 1D photoionization models and their assumed velocity fields, we simulate the line profiles of various ionic species. We attempt to use our model to account for the observed CEL and ORL profiles. As a case study we present a detailed study of line profiles of the low-excitation planetary nebula (PN) IC 418. Our results show that the profiles of classical temperature and density diagnostic lines, such as [O III] 4363,5007, [S II] 6716,6731, and [Ar IV] 4711,4740, provide a powerful tool to study nebular temperature and density variations. The method enables the CEL/ORL abundance-discrepancy problem to be studied more rigorously than before. A pure photoionization model of a chemically-homogeneous nebula seems to explain the observed disagreements in the profiles for the [O III] 4363 and the 5007 lines, but cannot account for the differences between the [O III] CELs and the O II ORLs. We also investigate the temperature and density variations in the velocity space of a sample of PNe, which are found to be insignificant.Comment: 9 pages, 10 figures, Accepted for publication in A&

    Accelerated post-AGB evolution, initial-final mass relations, and the star-formation history of the Galactic bulge

    Full text link
    We study the star-formation history of the Galactic bulge, as derived from the age distribution of the central stars of planetary nebulae that belong to this stellar population. The high resolution imaging and spectroscopic observations of 31 compact planetary nebulae are used to derive their central star masses. The Bloecker tracks with the cluster IFMR result in ages, which are unexpectedly young. We find that the Bloecker post-AGB tracks need to be accelerated by a factor of three to fit the local white dwarf masses. This acceleration extends the age distribution. We adjust the IFMR as a free parameter to map the central star ages on the full age range of bulge stellar populations. This fit requires a steeper IFMR than the cluster relation. We find a star-formation rate in the Galactic bulge, which is approximately constant between 3 and 10 Gyr ago. The result indicates that planetary nebulae are mainly associated with the younger and more metal-rich bulge populations. The constant rate of star-formation between 3 and 10 Gyr agrees with suggestions that the metal-rich component of the bulge is formed during an extended process, such as a bar interaction.Comment: accepted for publication in A&

    The gas turbulence in planetary nebulae: quantification and multi-D maps from long-slit, wide-spectral range echellogram

    Full text link
    This methodological paper is part of a short series dedicated to the long-standing astronomical problem of de-projecting the bi-dimensional, apparent morphology of a three-dimensional distribution of gas. We focus on the quantification and spatial recovery of turbulent motions in planetary nebulae (and other classes of expanding nebulae) by means of long-slit echellograms over a wide spectral range. We introduce some basic theoretical notions, discuss the observational methodology, and develop an accurate procedure disentangling all broadening components of the velocity profile in all spatial positions of each spectral image. This allows us to extract random, non-thermal motions at unprecedented accuracy, and to map them in 1-, 2- and 3-dimensions. We present the solution to practical problems in the multi-dimensional turbulence-analysis of a testing-planetary nebula (NGC 7009), using the three-step procedure (spatio-kinematics, tomography, and 3-D rendering) developed at the Astronomical Observatory of Padua. In addition, we introduce an observational paradigm valid for all spectroscopic parameters in all classes of expanding nebulae. Unsteady, chaotic motions at a local scale constitute a fundamental (although elusive) kinematical parameter of each planetary nebula, providing deep insights on its different shaping agents and mechanisms, and on their mutual interaction. The detailed study of turbulence, its stratification within a target and (possible) systematic variation among different sub-classes of planetary nebulae deserve long-slit, multi-position angle, wide-spectral range echellograms containing emissions at low-, medium-, and high-ionization, to be analyzed pixel-to-pixel with a straightforward and versatile methodology, extracting all the physical information stored in each frame at best.Comment: 11 page, 10 figures, A&A in pres

    Disk evaporation in a planetary nebula

    Full text link
    We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.Comment: 11 pages, accepted for publication in "Astronomy and Astrophysics

    The Evolution of NGC 7027 at Radio Frequencies: A New Determination of the Distance and Core Mass

    Full text link
    We present the results of a 25-year program to monitor the radio flux evolution of the planetary nebula NGC7027. We find significant evolution of the spectral flux densities. The flux density at 1465 MHz, where the nebula is optically thick, is increasing at a rate of 0.251+-0.015 % per year, caused by the expansion of the ionized nebula. At frequencies where the emission is optically thin, the spectral flux density is changing at a rate of -0.145+-0.005 % per year, caused by a decrease in the number of ionizing photons coming from the central star. A distance of 980+-100 pc is derived. By fitting interpolated models of post-AGB evolution to the observed changes, we find that over the 25-yr monitoring period, the stellar temperature has increased by 3900+-900 K and the stellar bolometric luminosity has decreased by 1.75+-0.38 %. We derive a distance-independent stellar mass of 0.655+-0.01 solar masses adopting the Bloecker stellar evolution models, or about 0.04 solar masses higher when using models of Vassiliadis & Wood which may provide a better fit. A Cloudy photoionization model is used to fit all epochs at all frequencies simultaneously. The differences between the radio flux density predictions and the observed values show some time-independent residuals of typically 1 %. A possible explanation is inaccuracies in the radio flux scale of Baars et al. We propose an adjustment to the flux density scale of the primary radio flux calibrator 3C286, based on the Cloudy model of NGC7027. We also calculate precise flux densities for NGC7027 for all standard continuum bands used at the VLA, as well as for some new 30GHz experiments.Comment: submitted to the Astrophysical Journa

    The evolving spectrum of the planetary nebula Hen 2-260

    Full text link
    We analysed the planetary nebula Hen 2-260 using optical spectroscopy and photometry. We compared our observations with the data from literature to search for evolutionary changes. The nebular line fluxes were modelled with the Cloudy photoionization code to derive the stellar and nebular parameters. The planetary nebula shows a complex structure and possibly a bipolar outflow. The nebula is relatively dense and young. The central star is just starting O+\rm O^+ ionization (Teff30,000K\rm T_{eff} \approx 30,000 \, K). Comparison of our observations with literature data indicates a 50% increase of the [OIII] 5007 \AA\ line flux between 2001 and 2012. We interpret it as the result of the progression of the ionization of O+\rm O^{+}. The central star evolves to higher temperatures at a rate of 45±7Kyr1\rm 45 \pm 7\,K\, yr^{-1}. The heating rate is consistent with a final mass of 0.6260.005+0.003M\rm 0.626 ^{+0.003}_{-0.005} \, M_{\odot} or 0.6450.008+0.008M\rm 0.645 ^{+0.008}_{-0.008} \, M_{\odot} for two different sets of post-AGB evolutionary tracks from literature. The photometric monitoring of Hen 2-260 revealed variations on a timescale of hours or days. The variability may be caused by pulsations of the star. The temperature evolution of the central star can be traced using spectroscopic observations of the surrounding planetary nebula spanning a timescale of roughly a decade. This allows us to precisely determine the stellar mass, since the pace of the temperature evolution depends critically on the core mass. The kinematical age of the nebula is consistent with the age obtained from the evolutionary track. The final mass of the central star is close to the mass distribution peak for central stars of planetary nebulae found in other studies. The object belongs to a group of young central stars of planetary nebulae showing photometric variability.Comment: accepted for publication in A&

    Are planetary nebulae derived from multiple evolutionary scenarios?

    Full text link
    Our understanding of planetary nebulae has been significantly enhanced as a result of several recent large surveys (Parker et al., these proceedings). These new discoveries suggest that the `PN phenomenon' is in fact more heterogeneous than previously envisaged. Even after the careful elimination of mimics from Galactic PN catalogues, there remains a surprising diversity in the population of PNe and especially their central stars. Indeed, several evolutionary scenarios are implicated in the formation of objects presently catalogued as PNe. We provide a summary of these evolutionary pathways and give examples of each. Eventually, a full census of local PNe can be used to confront both stellar evolution theory and population synthesis models.Comment: 4 pages, 1 figure. To be published in Planetary Nebulae: an Eye to the Future, Proceedings of IAU Symposium 283, held in Puerto de la Cruz, Tenerife, Spain, July 25-29 201
    corecore