20 research outputs found

    Time-resolved photoluminescence characterization of InGaAs/GaAs nano-ridges monolithically grown on 300 mm Si substrates

    Get PDF
    The monolithic growth of III–V materials directly on Si substrates provides a promising integration approach for passive and active silicon photonic integrated circuits but still faces great challenges in crystal quality due to misfit defect formation. Nano-ridge engineering is a new approach that enables the integration of III–V based devices on trench-patterned Si substrates with very high crystal quality. Using selective area growth, the III–V material is deposited into narrow trenches to reduce the dislocation defect density by aspect ratio trapping. The growth is continued out of the trench pattern and a box-shaped III–V nano-ridge is engineered by adjusting the growth parameters. A flat (001) GaAs nano-ridge surface enables the epitaxial integration of a common InGaAs/GaAs multi-quantum-well (MQW) structure as an optical gain medium to build a laser diode. In this study, a clear correlation is found between the photoluminescence (PL) lifetime, extracted from time-resolved photoluminescence (TRPL) measurements, with the InGaAs/GaAs nano-ridge size and defect density, which are both predefined by the nano-ridge related pattern trench width. Through the addition of an InGaP passivation layer, a MQW PL lifetime of up to 800 ps and 1000 ps is measured when pumped at 900 nm (only QWs were excited) and 800 nm (QWs + barrier excited), respectively. The addition of a bottom carrier blocking layer further increases this lifetime to ∼2.5ns (pumped at 800 nm), which clearly demonstrates the high crystal quality of the nano-ridge material. These TRPL measurements not only deliver quick and valuable feedback about the III–V material quality but also provide an important understanding for the heterostructure design and carrier confinement of the nano-ridge laser diode

    Search for high-energy neutrino emission from hard X-ray AGN with IceCube

    Get PDF
    Active Galactic Nuclei (AGN) are powerful astronomical objects with very high luminosities. Theoretical arguments suggest that these objects are capable of accelerating particles to energies of 1020 eV. In environments with matter or photon targets, cosmic-ray interactions transpire leading to the production of pionic gamma rays and neutrinos. Since the AGN environment is rich in gas, dust and photons, they are promising candidate sources of high-energy astrophysical neutrinos. While the neutrinos manage to escape, the gamma rays may further interact and cascade down to hard X-rays in environments with sufficiently large photon or gas targets. We have used 12 years of IceCube data to perform a stacked search and a point source search for high-energy neutrino emission from hard X-ray AGN sampled from Swift-BAT Spectroscopic Survey (BASS) and present the results of these two analyses

    Contrast Enhancement for Topographic Imaging in Confocal Laser Scanning Microscopy

    No full text
    The influence of the axial pinhole position in a confocal microscope in terms of the contrast of the image is analyzed. The pinhole displacement method is introduced which allows to increase the contrast for topographic imaging. To demonstrate this approach, the simulated data of a confocal setup as well as experimental data is shown. The simulated data is verified experimentally by a custom stage scanning reflective microscopy setup using a semiconductor test target with low contrast structures of sizes between 200 nm and 500 nm. With the introduced technique, we are able to achieve a contrast enhancement of up to 80% without loosing diffraction limited resolution. We do not add additional components to the setup, thus our concept is applicable for all types of confocal microscopes. Furthermore, we show the application of the contrast enhancement in imaging integrated circuits

    Investigation of Laser-Induced Periodic Surface Structures Using Synthetic Optical Holography

    No full text
    In this paper, the investigation of laser-induced periodic surface structures (LIPSSs) on a polycrystalline diamond substrate using synthetic optical holography (SOH) is demonstrated. While many techniques for LIPSS detection operate with sample contact and/or require preparation or processing of the sample, this novel technique operates entirely non-invasively without any processing of or contact with the LIPSS sample at all. The setup provides holographic amplitude and phase images of the investigated sample with confocally enhanced and diffraction-limited lateral resolution, as well as three-dimensional surface topography images of the periodic structures via phase reconstruction with one single-layer scan only

    Spectral Domain Optical Coherence Tomography for Non-Destructive Testing of Protection Coatings on Metal Substrates

    No full text
    In this paper we demonstrate that optical coherence tomography (OCT) is a powerful tool for the non-destructive investigation of transparent coatings on metal substrates. We show that OCT provides additional information which the common practice electrical impedance spectroscopy (EIS) cannot supply. First, coating layer thicknesses were measured and compared with reference measurements using a magnetic inductive (MI) measurement technique. After this validation of the OCT measurements, a customized sectioned sample was created to test the possibility to measure coating thicknesses with underlying corrosion, which cannot be analyzed accurately by MI or EIS measurements. Finally, we demonstrate the benefit of OCT on a standard sample. The OCT measurements provide the correct coating layer thickness with high lateral resolution and even enable metal and corrosion layers to be distinguished from each other

    Ultrafast spin-polarized vertical-cavity surface-emitting lasers

    No full text
    Spin-polarized lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. Spin-polarized vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. In particular, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. After briefly reviewing the state of research in this emerging field of spintronics, we present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than those. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future
    corecore