553 research outputs found

    Thermal treatment and environment effect on transient photoconductivity behavior of anatase TiO2 with dominant {0 0 1} facets

    Get PDF
    Nanosized anatase TiO2 powders with dominant {0 0 1} facets were prepared by solvothermal reaction of titanium isopropoxide in the presence of hydrofluoric acid as a capping agent. Two kinds of samples, as prepared and calcinated at 600 °C were fabricated and their UV-Visible and transient photoconductivity were investigated in vacuum and in air. The photoconductivity reaches high values and is sensitive on the environment. Thermal treatment improves the crystalline quality and enhances the amount of created excess charge carriers

    Electrical conductivity studies of anatase TiO2 with dominant highly reactive {0 0 1} facets

    Get PDF
    Nanostructured powders of titanium dioxide anatase nanoplates with dominant highly reactive {0 0 1} facets were fabricated using a solvothermal method. Two kinds of samples, as prepared and calcinated at 600 °C, were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrical conductivity in vacuum and in air. The dependence of the conductivity versus the inverse of temperature in the temperature range 150-440 K indicated the contribution of at least two conduction mechanisms in vacuum. The electron transport was controlled by partially depleted of charge carriers grains and adiabatic small polaron conduction in the high temperature regime and by Mott variable-range hopping (VRH) at lower temperatures. The environment was found from the experimental results to influence significantly the electrical conductivity values and its temperature dependence. A decrease with temperature in air is observed in the ranges 290-370 and 285-330 K for the as prepared and the calcinated sample respectively. Potential barriers caused by partial depletion of carriers at grain boundaries control the electrical conductivity behavior in air at high temperatures and VRH in the lower temperature regime

    Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles

    Get PDF
    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e. g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols

    Detection of Fake Generated Scientific Abstracts

    Full text link
    The widespread adoption of Large Language Models and publicly available ChatGPT has marked a significant turning point in the integration of Artificial Intelligence into people's everyday lives. The academic community has taken notice of these technological advancements and has expressed concerns regarding the difficulty of discriminating between what is real and what is artificially generated. Thus, researchers have been working on developing effective systems to identify machine-generated text. In this study, we utilize the GPT-3 model to generate scientific paper abstracts through Artificial Intelligence and explore various text representation methods when combined with Machine Learning models with the aim of identifying machine-written text. We analyze the models' performance and address several research questions that rise during the analysis of the results. By conducting this research, we shed light on the capabilities and limitations of Artificial Intelligence generated text

    Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Get PDF
    The ice nucleation activities of five different <i>Pseudomonas syringae</i>, <i>Pseudomonas viridiflava</i> and <i>Erwinia herbicola</i> bacterial species and of Snomax™ were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at −5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about −11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between −7 and −11°C with an ice nucleation (IN) active fraction of the order of 10<sup>−4</sup>. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around −8°C

    Investigation of the conjectured nucleon deformation at low momentum transfer

    Full text link
    We report new precise H(e,ep)π0(e,e^\prime p)\pi^0 measurements at the Δ(1232)\Delta(1232) resonance at Q2=0.127Q^2= 0.127 (GeV/c)2^2 using the MIT/Bates out-of-plane scattering (OOPS) facility. The data reported here are particularly sensitive to the transverse electric amplitude (E2E2) of the γNΔ\gamma^* N\to\Delta transition. Analyzed together with previous data yield precise quadrupole to dipole amplitude ratios EMR=(2.3±0.3stat+sys±0.6model)EMR = (-2.3 \pm 0.3_{stat+sys} \pm 0.6_{model})% and CMR=(6.1±0.2stat+sys±0.5model)CMR = (-6.1 \pm 0.2_{stat+sys}\pm 0.5_{model})% and for M1+3/2=(41.4±0.3stat+sys±0.4model)(103/mπ+)M^{3/2}_{1+} = (41.4 \pm 0.3_{stat+sys}\pm 0.4_{model})(10^{-3}/m_{\pi^+}). They give credence to the conjecture of deformation in hadronic systems favoring, at low Q2Q^2, the dominance of mesonic effects.Comment: 4 pages, 1figur

    Measurement of the Partial Cross Sections s(TT), s(LT) and [s(T)+epsilon*s(L)] of the p(e,e' pi+)n Reaction in the Delta(1232) Resonance

    Full text link
    We report new precision p(e,e' pi+})n measurements in the Delta(1232) resonance at Q2 = 0.127(GeV/c)2 obtained at the MIT-Bates Out-Of-Plane scattering facility. These are the lowest, but non-zero, Q2 measurements in the pi+ channel. The data offer new tests of the theoretical calculations, particularly of the background amplitude contributions. The chiral effective field theory and Sato-Lee model calculations are not in agreement with this experiment

    Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at Low Q2 Using the VCS Reaction

    Get PDF
    The mean square polarizability radii of the proton have been measured for the first time in a virtual Compton scattering experiment performed at the MIT-Bates out-of-plane scattering facility. Response functions and polarizabilities obtained from a dispersion analysis of the data at Q2=0.06 GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory. The data support the dominance of mesonic effects in the polarizabilities, and the increase of beta with increasing Q2 is evidence for the cancellation of long-range diamagnetism by short-range paramagnetism from the pion cloud
    corecore