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Abstract. The ice nucleation activities of five differentPseu-
domonas syringae, Pseudomonas viridiflavaand Erwinia
herbicola bacterial species and of Snomax™ were investi-
gated in the temperature range between−5 and−15◦C. Wa-
ter suspensions of these bacteria were directly sprayed into
the cloud chamber of the AIDA facility of Forschungszen-
trum Karlsruhe at a temperature of−5.7◦C. At this temper-
ature, about 1% of the Snomax™ cells induced immersion
freezing of the spray droplets before the droplets evaporated
in the cloud chamber. The living cells didn’t induce any de-
tectable immersion freezing in the spray droplets at−5.7◦C.
After evaporation of the spray droplets the bacterial cells re-
mained as aerosol particles in the cloud chamber and were
exposed to typical cloud formation conditions in experiments
with expansion cooling to about−11◦C. During these exper-
iments, the bacterial cells first acted as cloud condensation
nuclei to form cloud droplets. Then, only a minor fraction of
the cells acted as heterogeneous ice nuclei either in the con-
densation or the immersion mode. The results indicate that
the bacteria investigated in the present study are mainly ice
active in the temperature range between−7 and−11◦C with
an ice nucleation (IN) active fraction of the order of 10−4.
In agreement to previous literature results, the ice nucleation
efficiency of Snomax™ cells was much larger with an IN ac-
tive fraction of 0.2 at temperatures around−8◦C.

Correspondence to:O. Möhler
(Ottmar.Moehler@imk.fzk.de)

1 Introduction

Numerous organisms, including plants, invertebrates and mi-
croorganisms, can catalyze the freezing of supercooled wa-
ter, i.e. they can act as heterogeneous ice nuclei. This prop-
erty is generally due to the production of proteins or pro-
teinaceous compounds (seeMorris et al., 2004, for a review).
Some of these proteins are particularly efficient ice nuclei,
being able to induce freezing at temperatures just below 0◦C,
and are among the most active of the naturally occurring het-
erogeneous ice nuclei (Lee et al., 1995). Strains of the bac-
teriumPseudomonas syringae, in particular, can express ice
nucleation activity at−1 or−2◦C.

The bacteriumPseudomonas syringaecolonises plant sur-
faces from where it is emitted into the atmosphere. Net up-
ward flux ofP. syringaehas been recorded at rates of about
30 m−2s−1 above plant canopies (Lindemann et al., 1982).
Such emission from plant canopies is apparently effective
in transporting this bacterium up into clouds where it has
been detected by a few research teams (Sands et al., 1982;
Jayaweera and Flanagan, 1982; Amato et al., 2007). Ice nu-
cleation (IN) active strains ofP. syringaehave also been de-
tected in rain and snow (Constantinidou et al., 1990; Morris
et al., 2008) and in diverse substrates outside of agricultural
contexts suggesting that they are disseminated via the water
cycle (Morris et al., 2008).

Because of the importance of the ice phase in clouds in
the initiation of precipitation, a role for ice nucleation active
bacteria in rain and snowfall has long been suspected (see
Möhler et al., 2007, for a review). In fact it requires so-called
ice nuclei, i.e. solid aerosol particles with specific surface
properties, to freeze supercooled water droplets at temper-
atures above−35◦C. Once formed, the ice phase in clouds
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Table 1. Overview of samples prepared for the experiments. The
cell number concentration was obtained from microscopic analysis
for the Snomax™ suspensions and from optical density measure-
ments for the living cell suspensions.

Sample Type of bacteria Cell concentration (ml−1)

SM1 Snomax™ 7×108

SM2 Snomax™ 7×107

PS1 P. viridiflavaFMu107 1×109

P. syringaeIceHv
PS2 P. syringae31R1 1×109

PS3 P. syringaeCit7 1×109

EH1 E. herbicola268 Rb-2 9×108

grows and multiplies by a sequence of processes eventually
leading to precipitation. The warmer the freezing tempera-
ture the more time the ice particles have to take part in this
sequence and the more likely they are to grow to precipita-
tion size. It was shown in previous studies that bacteria are
candidates for effective ice nuclei at such warm temperatures
(Maki et al., 1974; Vali et al., 1976; Yankofsky et al., 1981;
Levin and Yankofsky, 1983; Ward and DeMott, 1989).

Up to now it is however not clear which are the sources and
number concentrations of the species of most importance in
cloud evolution and how efficient those species are in act-
ing as ice nuclei under the conditions of atmospheric clouds.
To address the latter question, new series of ice nucleation
experiments with bacteria have been started in the AIDA
(Aerosol Interaction and Dynamics in the Atmosphere) fa-
cility of Forschungszentrum Karlsruhe. Under humidity
and temperature conditions of expanding cloud parcels, the
efficiency of some selectedPseudomonas syringae, Pseu-
domonas viridiflavaand Erwinia herbicola species to in-
duce ice nucleation in the immersion and condensation freez-
ing mode were investigated at temperatures between−5 and
−15◦C. Experiments with Snomax™ have also been per-
formed for comparison with previous studies (Ward and De-
Mott, 1989; Wood et al., 2002).

2 Preparation of bacterial cells

All samples were prepared as suspensions in nanopure wa-
ter for later dispersion of the bacterial cells into the aerosol
phase (see Sect.4.2). Table1 summarises some properties of
the six different suspensions. Snomax™ pellets from York
Snow Inc. were used to prepare samples SM1 and SM2.
Snomax™ is an industrial product of strainP. syringae31R1
grown under conditions (proprietary information) to maxi-
mize the ice nucleation activity. Snomax™ is used to initi-
ate rapid freezing of droplets from spray guns that are used
by ski areas for artificial snow making. The SM1 and SM2

samples were prepared with a Snomax™ mass concentration
of 1.0 and 0.1 mg ml−1, respectively.

For ice nucleation experiments with living bacteria we se-
lected strains that were known from previous studies to show
high ice nucleation activity (INA) at temperatures between 0
and−10◦C when grown appropriately. Some samples were
tested for their INA with the droplet freezing method as de-
scribed in Sect.3. The cells were grown on petri dishes con-
taining King’s B agar (King et al., 1954) for 3 days at 25◦C.
Petri dishes were then transferred to 4◦C and were stored for
one week. Storage of the cells at this temperature for a few
days enhances their ice nucleation activity. After this period
of storage, they were washed off the plates with sterile dis-
tilled water, centrifuged to separate traces of the substrate
and resuspended again in sterile distilled water. The suspen-
sion was adjusted to an optical density of 0.6 at a wavelength
of 580 nm which corresponds to a cell number concentration
of about 1×109 ml−1.

Sample PS1 was prepared as a bacteria mixture of strain
Pseudomonas viridiflavaFMu 107 andPseudomonas sy-
ringae IceHv. The first bacterium is a very close relative
of P. syringaeand is often difficult to distinguish fromP. sy-
ringae. This strain was isolated from Chinese cabbage that
suffered frost damage at the onset of the period for frost risk
(in storage and in the field) in Beijing, People’s Republic of
China (Morris et al., 1992). The strainP. syringaeIceHv was
isolated from field-grown barley in Avignon, France in the
fall of 2005. The two samples were combined in order to get
enough volume for several experiments with the same sam-
ple at different temperatures in the cloud simulation chamber
(see Sect.4.1). The strainP. syringaeCit7 was isolated from
an orange tree in 1985, andP. syringae31R1 from corn in
1976 byLindow (1982). The latter is also used for the pro-
duction of Snomax™.

Two series of ice nucleation experiments, Bio02 and
Bio03, were conducted with Snomax™ and the 5 different
strains of living bacteria (see Sect.4, Table2). From the
amount of suspension sprayed into the 84 m3 large aerosol
vessel and the resulting cell number concentration obtained
from respective aerosol measurements (see Sect.4.2) we es-
timated the cell concentration in the suspension and in the
Snomax™ pellets. Dispersion of 20 ml of SM1 resulted in
an aerosol cell concentration of about 160 cm−3. From this
we calculate a total number of 1.4×1010 cells in the aerosol
vessel, a cell concentration of 7×108 ml−1 in the SM1 sam-
ple, and a cell concentration of 7×108 mg−1 in the Sno-
max™ pellets used to prepare SM1. The Snomax™ mass
concentration of sample SM2 was 10 times lower than that of
SM1. Dispersion of 50 ml resulted in a cell concentration of
40 cm−3 in the aerosol phase, a total number of 3.4×109 cells
in the aerosol vessel, a cell concentration of 7×107 ml−1 in
the SM1 sample, and a cell concentration of 7×108 mg−1 in
the Snomax™ pellets, which agrees with the cell concentra-
tion obtained from SM1.
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Table 2. Parameters of AIDA experiments and measured ice active fractions of bacterial cells.Vs is the sample volume of the bacterial
suspension directly sprayed into the AIDA cloud chamber (spray experiments with 0 pump speed). The resulting aerosol remained in the
chamber for the following experiment with expansion cooling by pumping (expansion experiments with 60% pump speed).p andTg are the
initial pressure and temperature in the cloud chamber, andnae, ncells, andni the measured number concentrations of total aerosol, bacterial
cell, and ice particles, respectively. The ice active cell fractionfINA is the ratio ofni to ncells, andTi the temperature at which the peak of
ice formation was observed.

Type of experiment Initial parameters Ice nucleation results
Exp. Bacteria Vs Pump p Tg nae ncells ni fINA Ti

key sample ml speed (%) hPa ◦C cm−3 cm−3 cm−3 ◦C

Bio02 04 SM1 20 0 1020.8 −5.6 5500 160 2 0.01 −5.6
Bio02 05 SM1 0 60 1020.0 −5.7 4450 150 40 0.2 −8±1
Bio02 06 PS1 20 0 1010.0 −5.8 18 000 290 <0.1 <0.0003 −5.8
Bio02 07 PS1 0 60 1008.0 −5.9 17 000 275 1 0.004 −10±1
Bio02 09 PS1 20 0 1002.1 −9.7 12 800 300 1 0.005 −9.7
Bio02 10 PS1 0 60 1002.0 −9.8 12 250 280 <0.1 <0.0004 −13±3

Bio03 06 SM2 50 0 1005.0 −5.7 13 300 38 <0.1 <0.003 −5.7
Bio03 07 SM2 0 60 1005.1 −5.8 11 700 43 10 0.23 −8±1
Bio03 08 PS2 50 0 1006.0 −5.6 4800 311 <0.1 <0.0003 −5.6
Bio03 09 PS2 0 60 1005.9 −5.7 4400 316 1 0.0032 −8±1
Bio03 11 PS3 50 0 1005.0 −5.7 6300 195 <0.1 <0.0005 −5.7
Bio03 12 PS3 0 60 1005.1 −5.8 4900 155 0.2 0.0013 −8±1
Bio03 19 EH1 100 0 1008.0 −5.7 2736 177 <0.1 <0.0006 −5.7
Bio03 20 EH1 0 60 1008.0 −5.8 2455 150 0.1 0.0007 −9±1

3 Droplet freezing experiments

The bacterial suspensions used for the Bio02 set of experi-
ments were tested for their INA behaviour with the droplet
freezing method as described byLindow (1982). The results
of these freezing tests were used to determine the optimum
starting temperatures and cell concentrations for the AIDA
ice nucleation experiments. Briefly, a set of 20µl droplets
from tenfold dilutions of a bacterial suspension is placed on
a paraffin-coated aluminium foil, placed on a cooling bath.
The temperature of the bath is then lowered and the num-
ber of frozen drops at each temperature (at 1 degree intervals
after a 30 s delay) is recorded. By taking into account the
concentration of bacteria, it is possible to estimate the con-
centration of ice nuclei for each temperature and, therefore,
the ice nucleation-active proportion of the bacterial popula-
tion. In this way we obtained for sample PS1 an IN active cell
number concentration of about 7×103 ml−1 at a temperature
of −9◦C. By dividing through the total cell concentration of
1×109 ml−1 we obtain an IN active cell fraction of 7×10−6

at the same temperature.

4 Cloud chamber experiments

The immersion and condensation freezing efficiencies of
bacterial cells suspended in the aerosol phase were investi-
gated at temperatures between−5 and−20◦C. The experi-
ments were performed in the AIDA (Aerosol Interaction and

Dynamics in the Atmosphere) facility of Forschungszentrum
Karlsruhe. Experimental parameters and results are sum-
marised in Table2. The aerosol of single bacterial cells was
generated by spraying the bacterial suspensions prepared as
described in Sect.2 through a nozzle directly into the AIDA
chamber. The spray process was used to estimate the INA
of the bacterial cells. Such experiments, hereafter termed
spray experiments, will be described in Sect.4.3. ADIA
was then operated as a pumped expansion chamber (Möhler
et al., 2005, 2006) to investigate the IN activity of the bac-
terial cells at simulated temperature and humidity conditions
in updraughting air parcels of atmospheric clouds. Such ex-
periments, hereafter termed expansion experiments, will be
described in Sect.4.4.

4.1 The AIDA cloud chamber facility

Briefly, the AIDA facility consists of a cylindrical aluminium
vessel with a volume of 84 m3. This vessel was used as a
cloud simulation chamber for the spray and cloud expansion
experiments. The vessel is located in a thermally insulating
box. An air ventilation, heating, and cooling system con-
trols the temperature inside this box in the range from 60
to −90◦C. In preparation of the experiments, temperature
changes are normally actuated during the night hours in or-
der to approach the desired starting temperature at a rate of
about 4 K/h. During the experiments, the cooling system is
operated at constant temperature control with temporal and
spatial variability below±0.3 K throughout the cold box and
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Fig. 1. Schematic of experimental setup for aerosol generation and
characterisation.

the cloud chamber. Also during the evening and night hours,
the cloud chamber is cleaned by pumping to a pressure below
1 hPa, flushing with dry synthetic air, and filling with particle
free humid air. The particle background after filling to atmo-
spheric pressure is normally below 0.1 cm−3. Experiments
were started at a pressure between 1002 and 1021 hPa (see
Table2). At constant temperature and pressure conditions,
a high relative humidity between 90 and 95% is maintained
inside the cloud simulation chamber by a partial dew or, at
lower wall temperatures, ice coverage of the inner chamber
walls.

The AIDA facility is equipped with a comprehensive set of
water, aerosol, and cloud instruments (Möhler et al., 2005,
2006). For the present study we used the chilled mirror
frost point hygrometer LX-373 from MBW Calibration Ltd.
in Switzerland for total water concentration measurements.
The in situ high-resolution diode laser absorption spectrom-
eter APicT-DLAS (Ebert et al., 2005) is used for fast and
sampling-free open-path water vapour measurements inside
the AIDA vessel. The water vapour concentration was mea-
sured directly within the cloud by using a fibre-coupled,
open-path, White-type absorption cell with an absoption path
length of 23.6 m inside the cloud chamber (seeMangold
et al., 2005, for more details). During the Bio02 and Bio03
experiments the APicT-DLAS measured with a 1.5 s tempo-
ral resolution and a concentration resolution of about 20 ppb.

Aspherical aerosol particles as well as growing water
droplets and ice particles were sensitively detected with the
in situ light scattering and depolarisation setup SIMONE.
This instrument measures the depolarisation of polarised

laser light of 488 nm wave lenght scattered from particles in
the center of the cloud chamber to a scattering angle of 176◦.
Any scattering depolarisation ratio (SDR) signal larger than
the background level of about 0.04 clearly indicates the pres-
ence of aspherical particles in the cloud chamber. These can
be either bacterial cells, which are known to be aspherical, or
ice particles growing to larger sizes after their nucleation by
IN active bacteria immersed in droplets.

The number concentration of droplets and ice particles
was measured with two optical particle counters Welas and
Welas2 from Palas GmbH Karlsruhe, Germany (Benz et al.,
2005). Both instruments are located below the cloud cham-
ber and measure the concentration of particles larger than
about 0.5µm (Welas) and 6µm (Welas2) in a sample flow
taken from the chamber volume through a vertical stainless
steel sampling tube. Because ice particles quickly grow to
larger sizes under the conditions of the AIDA experiments,
they can clearly be distinguished and separated from the
smaller droplets and aerosol particles (see Figs.4 to 7). The
detection limit of the Welas instruments is about 0.1 cm−3,
the uncertainty of ice concentration measurements is about
±30%. An infrared extinction spectrometer (FTIR) was
used to characterise droplet and ice clouds (Wagner et al.,
2006). The number concentrations and size distribution
of aerosols were measured with two condensation particle
counters (CPC3010, CPC3025), the scanning mobility parti-
cle sizer (SMPS) and the aerodymamic particle spectrometer
(APS), all from TSI.

4.2 Aerosol formation and characterisation

Figure 1 schematically shows the experimental setup for
aerosol formation and characterisation. Bacterial suspen-
sions were prepared as described in Sect.2 and directly
sprayed into the cloud chamber. The spray cloud was gen-
erated with a two-component jet device (model 970 from
Düsen-Schlick GmbH, Germany) which uses a particle free
synthetic air flow of about 1 l min−1 at an absolute pressure
of 2 bar to disperse a liquid flow of about 5 to 10 ml min−1.
It took about 5 min to disperse the sample volumes of 20
to 100 ml (see Table2). The dispersion nozzle was heated
to about 20◦C. Thus, when entering the cloud chamber, the
bacterial cells were immersed in warm water droplets, but
the droplets quickly cooled to the temperature of the cloud
chamber volume and, at the same time, started to evapo-
rate. Further details of the spray process and measurements
of ice nucleation during spray experiments will be discussed
in Sect.4.3.

After all the droplets evaporated within about 5 to 10 min,
the resulting aerosol size distributions were measured with
the SMPS and APS aerosol instruments. The two instru-
ments were operated outside the cold box (Fig.1) and con-
nected to the cloud chamber with stainless steel sampling
tubes. Particle losses in the sampling tubes can be neglected
for all aerosols used in this study. It should be noted here

Biogeosciences, 5, 1425–1435, 2008 www.biogeosciences.net/5/1425/2008/
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Fig. 2. Size distribution of Snomax™ aerosol measured before ex-
pansion experiment Bio0307 with the scanning mobility particle
spectrometer SMPS (circles) and the aerodynamic particle spec-
trometer APS (tiangles). The size distribution clearly reveals the
bi-modal nature of the aerosol with smaller residual particles from
evaporated droplets which didn’t contain intact bacterial cells and
the larger, but less abundant, bacterial cell particles with diameters
around 0.8µm. The sum of two lognormal size distribution (solid
line) was fitted to the data.

that the SMPS system measures the electrical mobility size
and the APS the aerodynamic size of aerosol particles. These
diameters are different for particles which are aspherical, and
therefore have a dynamic shape factor larger than one, or
which have a density different from 1 g cm−3. Because bac-
terial cells are known to be aspherical, the SMPS and APS di-
ameters were converted into the so-called volume-equivalent
sphere diameter, i.e. the diameter of a spherical particle hav-
ing the same terminal settling velocity as the particles mea-
sured with the SMPS and APS. Best match of the transferred
SMPS and APS size distributions was achieved with a den-
sity of 1 g cm−3 and a dynamic shape factor of about 1.1 to
1.3. The aspherical nature of the bacterial cells in the aerosol
phase was also reflected by an enhanced depolarisation ratio
of scattered light measured with SIMONE during and after
adding the bacterial cells to the cloud chamber (see Sect.5.

Figures 2 and 3 show two examples of size distribu-
tions measured before the start of experiments Bio0307 and
Bio03 09. Both examples reveal the clear bimodal structure
of the aerosol which was observed in all experiments. The
reason for that is that only a minor fraction of the droplets
generated by the spray nozzle contained a bacterial cell. The
mode of smaller particles can therefore be explained as resid-
ual particles of evaporating droplets without a bacterial cell.
The smaller but more narrow mode of larger particles shows
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Fig. 3. Same as Fig.2 for P. syringae31R1 of experiment
Bio03 09. In this example the mode of bacterial cell particles has a
median diameter of 0.6µm.

the size distribution of the bacterial cells in the aerosol phase.
The larger mode size of about 0.8µm for Snomax™ (Fig.2)
and 0.6µm for P. syringae31R1 (Fig.3) is in good agree-
ment with the expected size of single bacterial cells.

In some cases the larger mode of cell particles showed a
tail towards larger particle diameters. This can be explained
by a minor fraction of agglomerate particles of 2 or more bac-
terial cells originating from larger droplets which contained
the respective number of cells after dispersion. Because of
the low number concentrations of cell particles (see below),
the formation of larger cell agglomerates by coagulation can
be neglected on the time scales of the experiments.

The sum of two lognormal size distribution was fitted to
the measured data, shown as solid lines in Figs.2 and3. The
number concentrationnae of the total aerosol, i.e. the sum of
both modes, and the number concentrationncells of the bac-
terial cells in the larger mode were obtained from the lognor-
mal fits. The results are listed in Table2. The size distribu-
tion fit result fornae was in good agreement with the aerosol
number concentrations directly measured with the conden-
sation particle counter CPC3025 and, for number concentra-
tions below about 10 000 cm−3 also with the CPC3010 in-
strument. With number concentration between about 30 and
300 cm−3 the bacterial cells in the cloud chamber were about
a factor 6 to 60 less abundant than the residual particles.

4.3 Spray experiments

During the formation of the spray cloud in the cold aerosol
chamber we also looked for the formation of ice crystals by
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Fig. 4. Data time series from spray experiment Bio0209 with PS1
aerosol with time in seconds relative to the start of the spray for-
mation. The spray formation lasted from 0 to about 300 s. Plotted
are the aerosol vessel pressurep (black line, panel 1), mean gas
temperatureTg (blue line, panel 1), and mean wall temperatureTw

(dash-dotted grey line, panel 1), the relative humidity with respect
to liquid water, RH (blue line, panel 2), optical diametersD of sin-
gle particles (aerosol, droplet, or ice) from the Welas2 instrument
(black dots, panel 3), as well as, in panel 4, the aerosol number
concentrations measured with the CPC3010 (black line), the num-
ber concentration of all particles in the detection range of the Welas
instrument (Welas all, grey line), and the ice particle number con-
centrations measured with the two optical particle counters (Welas
ice, blue circles and Welas2 ice, blue triangles).

heterogeneous ice nucleation of bacterial cells immersed in
the cloud droplets. These so-called spray experiments were
only sensitive to immersion freezing of the cells. Exam-
ples are shown in Figs.4 and 5 for the spray experiments
Bio02 09 and Bio0308, respectively. The different panels
show data time series of the aerosol vessel pressurep, mean
gas temperatureTg and mean wall temperatureTw, the rel-
ative humidity with respect to liquid water, RH, the scat-
tering depolarisation signal SDR from the SIMONE instru-
ment (only in Fig.5), the optical diametersD of single par-
ticles (aerosol, droplet, or ice) from the Welas2 instrument,
as well as particle number concentrations measured with the
CPC3010, Welas, and Welas2 instruments.

The pressure and gas temperature are almost constant dur-
ing the spray experiments. The time axis of Figs.4 and
5 is plotted in seconds relative to the start of spray forma-
tion. The duration of spray formation was about 300 s in

Fig. 5. Data time series from spray experiment Bio0308 with strain
31R1 aerosol with time in seconds relative to the start of the spray
formation. The spray formation lasted from 0 to about 200 s. Pan-
els 1 and 2 show the same type of data as in Fig.4. Panel 3 depicts
the scattering depolarisation signal SDR from the SIMONE instru-
ment, panel 4 the optical diametersD of single particles (aerosol,
droplet, or ice) from the Welas2 instrument (black dots), and panel
5 the aerosol number concentrations measured with the CPC3010
(black line), the number concentration of all particles in the detec-
tion range of the Welas2 instrument (Welas2 all, grey line), and the
ice particle number concentrations measured with the Welas2 in-
strument (Welas2 ice, blue triangles).

experiment Bio0209 and 200 s in experiment Bio0308. It
can be seen in both examples that the relative humidity starts
to rise with the spray formation due to the evaporation of the
liquid water droplets in the cloud chamber. The humidity ap-
proaches water saturation, marked by the horizontal dashed
blue line in panel 2, after about 1 min. The aerosol num-
ber concentration also steeply rises with the spray formation.
The CPC3010 measures both aerosol particles and residual
particles from the water droplet and ice particles evaporating
in the warm sampling tube of the instrument. The fluctu-
ation of the aerosol concentration during the spray forma-
tion process reflects the inhomogeneous distribution of the
spray cloud inside the aerosol chamber. The internal mix-
ing time scale of the cloud chamber is of the order of 1 min.

Biogeosciences, 5, 1425–1435, 2008 www.biogeosciences.net/5/1425/2008/
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Fig. 6. Data time series from expansion experiment Bio0307 with
Snomax™ aerosol with time in seconds relative to the start of pump-
ing. The expansion cooling by pumping lasted from 0 to about
330 s. Panels 1 to 4 depict the same type of data as in Fig.5.
Panel 5 shows the aerosol number concentrations measured with
the CPC3010 (black line), the number concentration of all particles
in the detection range of the Welas instrument (Welas all, grey line),
and the ice particle number concentrations measured with the Welas
instrument (Welas ice, blue circles) and with the Welas2 instrument
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A homogeneous aerosol distribution is quickly reached after
spray formation is stopped.

As long as the humidity is still below water saturation at
the beginning of the spray formation, the droplets quickly
evaporate and are not detected with the optical particle coun-
ters. As soon as water saturation is reached, the droplet
concentration in the cloud chamber increases as shown in
panel 3 of Fig.4 and panel 4 of Fig.5. The droplets can
clearly be identified as a dense area of black dots in the
lower part of these panels with droplet diameters up to about
20µm. A second group of larger ice particles with optical
diameters up to about 200µm is only detected in experiment
Bio02 09 (Fig.4). During this experiment Welas2 data was
only recorded for 400 s after experiment start. Therefore, the
evaporation of the droplet and ice cloud is not detected.

No significant ice formation was observed during the spray

Fig. 7. Data time series from expansion experiment Bio0307 with
strain 31R1 aerosol with time in seconds relative to the start of
pumping. The expansion cooling by pumping lasted from 0 to about
330 s. Plotted is the same type of data as in Fig.6.

experiment Bio0308 (Fig. 5). During this experiment, the
spray droplets were completely evaporated after 450 s. The
scattering depolarisation ratio measured during this exper-
iment (SDR, panel 3) starts to rise with the spray forma-
tion due to the aspherical bacterial cells added to the aerosol
chamber. With an increasing abundance of liquid droplets
in the chamber, indicated by the Welas2 data in panel 4,
the scattering signal is dominated by spherical droplets with
almost no depolarisation. The SDR signal starts to rise
again with the evaporation of the droplets and the release of
the bacterial cells immersed in the droplets into the aerosol
phase.

4.4 Cloud expansion experiments

After the bacterial suspensions were sprayed into the cloud
chamber as described in Sects.4.2and4.3, the efficiency of
the bacterial cells in the condensation and immersion modes
of freezing was investigated in dynamic expansion experi-
ments. Examples of such expansion experiments are shown
in Figs. 6 and 7 for Bio03 07 and Bio0309, respectively.
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As in Fig. 5, the different panels show time series of pres-
sure, gas and wall temperature, relative humidity with respect
of water, backscattering depolarisation, optical diameter of
individual aerosol and cloud particles, as well as aerosol,
droplet, and ice particle number concentrations. The time
axis of Figs.6 and7 is plotted in seconds relative to the start
of pumping.

The expansion experiments were started at constant pres-
sure and temperature conditions as given in Table2. The
pressure in the cloud chamber was then lowered by pumping
to about 850 hPa within a time period of about 5 min (solid
black line in top panel). In all expansion experiments the
same expansion rate was used by setting the pump speed to
60% of its maximum value. The pump speed is also listed
in column 4 of Table2. A value of 0 indicates the spray ex-
periments at constant pressure and temperature and a value
of 60 the expansion experiments with dynamic changes of
pressure, temperature, and humidity.

The expansion causes quasi-adiabatic cooling of the cloud
chamber volume shown by the measured gas temperatureTg

in Figs.6 and7 (solid blue line in top panel). A mixing fan
in the bottom part of the chamber forces homogeneous tem-
perature and humidity conditions during the expansion. The
wall temperatureTw (dash-dotted line in top panel) stays al-
most constant all the time. The increasing difference between
Tw andTg causes an increasing heat flux from the chamber
walls and thereby an increasing deviation of the temperature
change from the adiabatic case.

The relative humidityRH with respect to water, calcu-
lated from the measured water vapour partial pressure (see
Sect.4.1) and the water saturation pressure with respect to
Tg is shown in the second panel of Figs.6 and7 (solid blue
line). Starting from about 95%, the relative humidity in-
creases due to the expansion cooling and approaches water
saturation after about 40 s of pumping. At about the same
time, the total number of particles measured with the optical
particle counter Welas (grey line in the lower panel) steeply
raises due to the activation and growth of water droplets.
Panels 4 also clearly shows the formation of the droplet cloud
with diameters up to about 10µm during Bio0307 and about
15µm during Bio0309. The same data sets clearly show the
formation of larger ice particles with diameters up to about
200µm. In both expamples no ice crystals are detected be-
fore the formation of the droplets was observed. The number
of ice particles measured with two optical particle counters
Welas and Welas2 are shown in the lower panel of Figs.6
and7 (blue circles and triangles, respectively).

The FTIR extinction spectra measured at the same time
(not shown in the figure) reveal that initially mainly wa-
ter droplets are formed and that the number of droplets is
close to the number of aerosol particles before droplet for-
mation (black line in the lower panel). It should be noted
that the CPC3010 measures the total particle concentra-
tion and does not distinguish between aerosol particles and
droplets. The Welas instrument underestimates the total

droplet concentration because some droplets are too small
for optical detection. The third panels of Figs.6 and7 show
the scattering depolarisation ratio (SDR). The SDR signals
before start pumping, i.e. before cloud droplet and ice acti-
vation, are due to the bacterial cells alone. It can be seen that
the P. Syringaebacteria of strain 31R1 gives a larger SDR
than the Snomax™ cells, which means that the living cells
are more aspherical.

5 Results and discussion

Two series of experiments were performed during the AIDA
campaigns Bio02 in January 2006 and Bio03 in May 2006
(see Table2). Experimental parameters and results are sum-
marised in Table2. Most of the experiments were started at
an initial temperatureTg of about−5.7◦C. Only experiments
Bio02 09 and Bio0210 were started at a colder temperature
of about−9.7◦C. The amount of sample volumeVs sprayed
into the cloud chamber is also given in Table2 for the static
experiments without pumping (zero pump speed). A value
of zero in this column of the table indicates that the aerosol
generated during the spray experiment before remained in the
chamber for the subsequent expansion experiment.

As a main result from this work, the IN active cell fraction
fINA was calculated from the ratio of the ice particle number
concentrationni to the cell number concentrationncells. The
estimated uncertainty forfINA is about±60%. In case of
the spray experiments with Snomax™ at−5.7◦C, significant
ice formation was only measured during Bio0204 with an
IN active fraction of about 1 %. For Bio0306 only an upper
limit of 0.003 could be given, which is in agreement to the
Bio02 04 result within experimental uncertainty. This means
that only 1% or less of the Snomax™ cells is ice-active at
−5.7◦C in the immersion mode of freezing, at least within
the evaporation timescale of the spray droplets which is of
the order of a few seconds to a few minutes. In similar cloud
expansion studies with Snomax™Ward and DeMott(1989)
found some IN active cells at a temperature around−5◦C.

Figure6 shows, as an illustrative example, how the num-
ber of ice particles increased during the expansion experi-
ment Bio0307 after droplets had formed. The formation of
some ice crystals immediately after the activation of the first
droplets is indicated in a small SDR peak next to the vertical
blue line. The number of ice crystals was below the detection
limit of the Welas instruments. The SDR then drops and ap-
proaches the background value because the few ice crystals
rapidly grew to large sizes and settled to the floor of the cloud
chamber. The major peak of ice formation occurred between
50 and 110 s of pumping time with the Welas ice number
concentration increasing to a maximum value of 10 cm−3.
This corresponds to an increase of the fraction of IN active
cells from almost 0 to a maximum value of 0.23 within a nar-
row temperature range from about−7 to−9◦C. At the same
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time, the depolarisation ratio starts to rise again, which also
indicates the formation and growth of further ice crystals.

About 20 s after the ice particle concentration reached its
maximum value, the droplets evaporated due to the so-called
Bergeron-Findeisen mechanism. In other words, the lower
saturation pressure of water above the ice particles compared
to the supercooled water droplets lowers the relative humid-
ity, as also indicated in the TDL measurements, and there-
fore induces growth of the ice volume in expense of the liq-
uid droplet. The evaporation of the droplets is also indicated
in the steep SDR increase. After all water droplets evapo-
rated, which was confirmed by the FTIR measurements, the
expansion still continued to a minimum temperature of about
−11◦C, but no further increase ofni was observed. This in-
dicates that the remaining 77% of the not yet IN active cells
didn’t show detectable INA in the deposition mode of ice nu-
cleation at temperatures as low as−11◦C. The ice number
concentration decreased with time due to settling losses of
the larger ice crystals in the chamber, and about 150 s after
pumping stopped the remaining ice crystals completely evap-
orated in the warming cloud chamber. Experiment Bio0304
also revealed that about 20% of the Snomax™ cells are ice
active between−7 and−9◦C. This is in agreement to studies
by Ward and DeMott(1989) andWood et al.(2002) who also
found strong ice nucleation efficiency of Snomax™ at these
temperatures.

During experiment Bio0309, ice particles also formed be-
tween about 50 and 110 s of pumping time (lowest panel in
Fig 7), but with a tenfold lower number concentration. In
this experiment, the initially higher SDR of the more aspher-
ical bacteria (see above) dropped to almost the background
value during the formation of the liquid cloud. This indicates
that most of the bacterial cells are CCN active and transform
from aspherical particles to spherical droplets without scat-
tering depolarisation. The SDR rises again along with the
formation of ice particles and decreases with the settling loss
of the ice particles between 150 and 400 s.

It should be noted that for the analysis offINA in the
present study we assumed that only the cell particles but
not the residual particles are ice-active and, in case of the
expansion experiments, that most of the cell particles were
activated to form cloud droplets. The first assumption was
supported by the fact that no significant ice formation was
observed at a temperature between−5.7 and−11◦C in an
expansion experiment with a filtered Snomax™ suspension
which resulted in a spray aerosol of only residual particles,
but no larger bacterial cells. The second assumption also
seems to be reasonable because bacterial cells have been
found to be active cloud condensation nuclei at relatively
low supersaturation with respect to water (Franc and DeMott,
1998; Bauer et al., 2003). So, at least if the cells are wettable,
they are in favour for CCN activation due to their larger size
compared to the residual particles. As discussed above also
the SDR data indicates the CCN activation of bacterial cells.

In all spray experiments with living cells at−5.7◦C no sig-

nificant ice formation was observed. During the expansion
experiments the same strains were only slightly active at tem-
peratures between−7 and−11◦C with IN active fractions
of the order of 10−4. The lower ice-active fraction is also
illustrated for experiment Bio0309 in Fig. 7 which shows
the same type of data as already discussed above for experi-
ment Bio0307. For the PS1 sample, a second spray experi-
ment was performed at a temperature of−9.7◦C (Bio02 08,
see also Fig.4). At this temperature the observed IN ac-
tive fraction was about 0.005 which is in good agreement to
the value of 0.004 measured during the preceding experiment
Bio02 07 at a similar temperature. This example demon-
strates that IN active fractions measured in spray and expan-
sion experiments at the same temperature agree to each other.
Surprisingly, no significant ice formation was observed in
the expansion experiment Bio0210 with cooling to a min-
imum temperature of−15.2◦C. This indicates that almost
all IN active cells have been activated during the experiment
Bio02 09 before, followed by either deactivation if the IN ac-
tive sites or removal from the cloud chamber by settling ice
crystals.

It was not possible to exactly determine the removal ef-
ficiency of ice crystals under the conditions of the experi-
ments discussed here. At least a minor fraction of the ice
particles formed during the expansion experiments with Sno-
max™ were likely to evaporate in the chamber (see Fig.6)
and to release their ice nuclei to the chamber aerosol. Again,
subsequent expansion with the remaining aerosol not listed
in Table2 didn’t show any significant ice formation. Further
experiments are needed to investigate and quantify a possible
deactivation effect of IN active cells. We can conclude from
experiments Bio0206 to Bio0210 that the ice nucleation ac-
tivity of strainsP. viridiflavaFMu107 andP. syringaeIceHv
only occurs in a narrow temperature range around−10◦C.
Previous studies byLevin and Yankofsky(1983) andWard
and DeMott(1989) have also demonstrated that freezing in-
duced by bacterial cells may occur only in narrow tempera-
ture ranges.

For the sample PS1, the fraction of IN active cells was also
determined with the droplet freezing method as described in
Sect.3. The lower value of about 10−5 (the ratio between the
number of IN active cells and the number of cells per ml in
Table1) compared to the AIDA could be due to the slightly
warmer temperature. However, further droplet freezing and
AIDA chamber experiments are needed for a better quanti-
tative comparison of both methods. This is in particular im-
portant because previous laboratory experiments on the ice
nucleation efficiency of bacterial cells have also indicated IN
active fraction of the order of 10−5 (Yankofsky et al., 1981).

6 Conclusions

The ice nucleation efficiencies of five differentP. sy-
ringae, P. viridiflava andE. herbicolabacteria strains were
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investigated at simulated cloud conditions in the tempera-
ture range from−5.7 to −15◦C. Within the detection lim-
its of our experiments, no INA of the bacteria species was
observed above−7◦C. The results indicate that the bacteria
investigated in the present study are mainly IN active in the
temperature range between−7 and−11◦C with an IN active
fraction of the order of 10−4. It should be investigated in ap-
propriate cloud modelling studies if such low fractions of IN
active bacterial cells could have an impact on cloud develop-
ment and the initiation of precipitation through the ice phase.
This of course also depends on the fraction of cloud droplets
that contain bacterial cells and the actual properties of bacte-
rial cell in clouds. Further studies are needed to measure the
sources, distribution, and concentration of bacterial cells in
the troposphere and to investigate the INA of cells extracted
from cloud and rain water.

For theP. syringaestrain 31R1, we measured an IN ac-
tive fraction of 4×10−4 at−10◦C in AIDA experiments, but
only 4×10−6 at−9◦C in freezing experiments with droplets
deposited on a cooled aluminium foil. From the few droplet
freezing experiments conducted during the present study we
are not able to conclude if there is a systematic difference
between AIDA results and the droplet freezing method ac-
cording toLindow (1982). This needs to be addressed in
further experiments.

For Snomax™ cells an IN active fraction of about 0.2 was
measured at temperatures around−8◦C. A little ice activ-
ity was also observed around−6◦C. The AIDA results are
in reasonable agreement withWard and DeMott(1989) who
reported two distinct peaks of Snomax™ ice activity around
−5 and−8◦C. Some of the AIDA results indicate a possible
deactivation of bacterial cells as active ice nuclei during the
first ice activation event. Such a deactivation could have a
remarkable impact on the role of IN active bacteria in cloud
formation and should further be investigated.
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