74 research outputs found

    Associations between Serum Sex Hormone Concentrations and Whole Blood Gene Expression Profiles in the General Population

    No full text
    <div><p>Background</p><p>Despite observational evidence from epidemiological and clinical studies associating sex hormones with various cardiometabolic risk factors or diseases, pathophysiological explanations are sparse to date. To reveal putative functional insights, we analyzed associations between sex hormone levels and whole blood gene expression profiles.</p><p>Methods</p><p>We used data of 991 individuals from the population-based Study of Health in Pomerania (SHIP-TREND) with whole blood gene expression levels determined by array-based transcriptional profiling and serum concentrations of total testosterone (TT), sex hormone-binding globulin (SHBG), free testosterone (free T), dehydroepiandrosterone sulfate (DHEAS), androstenedione (AD), estradiol (E2), and estrone (E1) measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay. Associations between sex hormone concentrations and gene expression profiles were analyzed using sex-specific regression models adjusted for age, body mass index, and technical covariables.</p><p>Results</p><p>In men, positive correlations were detected between AD and <i>DDIT4 </i>mRNA levels, as well as between SHBG and the mRNA levels of <i>RPIA</i>, <i>RIOK3</i>, <i>GYPB</i>, <i>BPGM</i>, and <i>RAB2B</i>. No additional significant associations were observed.</p><p>Conclusions</p><p>Besides the associations between AD and <i>DDIT4</i> expression and SHBG and the transcript levels of <i>RPIA</i>, <i>RIOK3</i>, <i>GYPB</i>, <i>BPGM</i>, and <i>RAB2B</i>, the present study did not indicate any association between sex hormone concentrations and whole blood gene expression profiles in men and women from the general population.</p></div

    Slamming the door on trade policy discretion? : the WTO Appellate Body’s ruling on market distortions and production costs in EU-Biodiesel (Argentina)

    Get PDF
    This paper presents a legal-economic analysis of the Appellate Body’s decision that the WTO’s Anti-Dumping Agreement (ADA) precludes countries from taking into account government-created price distortions of major inputs when calculating anti-dumping duties, made in EU-Biodiesel (Argentina). In this case, the EU made adjustments to the price of biodiesel’s principal input – soybeans – in determining the cost of production of biodiesel in Argentina. The adjustment was made based on the uncontested finding that the price of soybeans in Argentina was distorted by the existence of an export tax scheme that resulted in artificially low soybean prices. The Appellate Body found that the EU was not permitted to take tax policy-induced price distortions into account in calculating dumping margins. We analyze the economic rationale for Argentina’s export tax system, distortions in biodiesel markets in Argentina and the EU, and the remaining trade policy options for addressing distorted international prices. We also assess whether existing subsidies disciplines would be more effective in addressing this problem and conclude that they would not

    Characterization of the primary PEC lines.

    No full text
    <p>PECs were negative for the endothelial marker <i>von Willebrand factor</i> (vWT, A) and for myofibroblast marker <i>alpha-SMA</i> (B). HUVECs (A′) or human dermal fibroblasts (B′) were used as positive controls. Polyclonal parietal cells were positive for claudin-1 (C) and caveolin-1 (D). C′, D′. Negative controls were performed using isotype-matched irrelevant primary antibodies. E. A significantly lower expression of synaptopodin was observed in parietal cells expressed even after six passages compared to primary podocytes (E′) or an immortalized podocyte cell line IHPC (E″). The findings were confirmed by SDS-page with subsequent immunoblotting using lysates of parietal cell cultures 2, 8 and 11 (F–H). Lysates of polyclonal primary podocyte cultures as well as of an immortalized podocyte cell line IHPC also showed expression of claudin-1 and calveolin-1. No expression of caveolin-1 was observed in Hel-1, GDM or Set-1 cell lines (G). Equal loading was verified by Ponceau S stain. H. Podocin expression is absent in primary PECs and down regulated in primary podocyte cells and in an immortalized podocyte cell line IHPC. I. Podoplanin is differentially expressed in primary podocytes relative to primary PECs after six passages in culture (arrow), consistent with mRNA expression analysis. Lysates of isolated glomeruli are used as positive control (H, I).</p

    Expression of podocyte marker proteins by primary parietal or podocyte cell lines.

    No full text
    <p>A. Lysates of primary PECs or podocytes were subjected to immunoblotting for Pax2 expression. Primary PECs expressed significant amounts of Pax2, lower amounts were detected in primary podocytes (arrow). Lysates of endothelial cells (HUVEC or glomerular endothelial cells) were used as negative controls. B. After six passages, Pax2 was expressed in primary PECs and podocytes (arrow). Total kidney lysates were used as positive controls, endothelial cells were used as negative controls. C, C′ In immunofluorescent stainings on primary PECs and podocytes after six passages of culture, Pax2 was expressed in a nuclear fashion. Isotype-matched irrelevant antiserum was used as control (C′). D. Immunoblotting lysates of primary PECs or podocytes using ab sc192 showed that WT-1 is expressed in both cell types with significantly higher levels in primary podocytes (arrow). Lysates of endothelial cells were negative for WT1. E. After six passages, WT1 was expressed both in PECs and podocytes in a nuclear fashion (immunofluorescent staining using ab sc192). F. Parietal cells express low levels of WT1 also <i>in vivo</i> in mice with a mixed genetic background using ab sc846 (F, F′, arrowheads, immunohistological staining). For comparison, a strong expression of WT-1 was detected in podocytes (arrows). No WT-1 expression was noted elsewhere in the renal cortex, specifically not in proximal tubular cells (white arrowheads). G. Similarly, PECs expressed WT-1 also in other mouse genetic backgrounds (Sv129; WT-1/PAS staining) H, I. PECs (arrowheads) expressed low amounts of WT-1 also in normal Wistar rats (H) and humans (I). H′. Isotype matched controls were negative.</p

    Transcriptome analysis of primary podocyte and PEC cultures.

    No full text
    <p>A. Eight transcriptomes were determined from two independent primary podocyte cultures and two independent primary PEC cultures grown in two different media (EGM-MV+20% FCS or RPMI+10% FCS), respectively. Transcriptomes were subjected to principal component analysis. PEC cultures (red spheres) are separated from podocyte cultures (blue spheres) along the axis of principle component 1 (PC1), which accounts for 47.8% of the overall variance in gene expression. Cells cultured in RPMI (light red and light blue spheres) segregate from those cultured in EGM-MV (bright red and bright blue spheres) along the axis of PC2, accounting for 11.8% of the variance. B. Primary podocyte and PEC cultures can also be clearly distinguished by cluster analysis of 2,507 significantly differentially regulated genes. C. Differential expression of the gene mRNA transcripts cadherin-3, EPH receptor A7, ladinin and scinderin in primary PEC cultures correlated with preferential expression in PECs versus podocytes in human kidney <i>in vivo</i> (arrowheads; images from <a href="http://www.proteinatlas.org" target="_blank">www.proteinatlas.org</a><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0034907#pone.0034907-Uhlen1" target="_blank">[16]</a>). D. Expression levels of selected genes in primary podocyte and PEC cultures. Expression levels are given as mean logarithmic values to the base 2 of arbitrary intensity units.</p

    The GWAS-selected SNPs association with AD, CRC or PCa, considering allelic and additive models.

    No full text
    <p>Bold denotes significant association (<i>p</i><0.05). G1 vs. G2; compared groups of cases and controls, respectively, MA; minor allele (+) strand, F1, F2; frequency of MA in the case and control groups, respectively, OR; odds ratio, CI; confidence interval, N; control, PCa; prostate cancer, AD; adenoma, CRC; colorectal cancer, F; female, M; male.</p>a<p><sup>/</sup>SNP identifier based on NCBI SNP database;</p>b<p><sup>/</sup>NCBI ID of genes localized in proximity to the SNPs of interest (source: HapMap).</p

    Group statistics of the GWAS and the replication study cohorts.

    No full text
    <p>The GWAS validation panel indicates numbers of patients (N) enrolled in the GWAS, after excluding microarrays that did not meet quality control criteria based on the PCA results. The ‘Range’ and ‘Median’ values regard age of cases and controls in respective groups. Both GWAS validation and replication analyses were done using respective individual patient TaqMan® genotyping. The TaqMan® genotyping data was subjected to a quality filtration using the 5% threshold of per-individual maximum genotype missingness (see ‘<i>Statistical analyses – individual genotyping</i>’).</p
    • …
    corecore