63 research outputs found

    Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases

    Get PDF
    Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL

    3D-QSAR and docking studies of pentacycloundecylamines at the sigma-1 (σ1) receptor

    Get PDF
    Pentacycloundecylamine (PCU) derived compounds have been shown to be promising lead structures for the development of novel drug candidates aimed at a variety of neurodegenerative and psychiatric diseases. Here we show for the first time a 3D quantitative structure–activity relationship (3D-QSAR) for a series of aza-PCU-derived compounds with activity at the sigma-1 (r1) receptor. A comparative molecular field analysis (CoMFA) model was developed with a partial least squares cross validated (q2) regression value of 0.6, and a non-cross validatedr2 of 0.9. The CoMFA model was effective at predicting the sigma-1 activities of atest set with an r2 >0.7. We also describe here the docking of the PCU-derivedcompounds into a homology model of the sigma-1 (r1) receptor, which was developed to gain insight into binding of these cage compounds to the receptor. Based on docking studies we evaluated in a [3H]pentazocine binding assay anoxa-PCU, NGP1-01 (IC50 = 1.78 lM) and its phenethyl derivative (IC50 = 1.54 lM). Results from these studies can be used to develop new compounds with specific affinity for the sigma-1(r1)Web of Scienc

    Structure-activity and in vivo evaluation of a novel lipoprotein lipase (LPL) activator

    Get PDF
    Elevated triglycerides (TG) contribute towards increased risk for cardiovascular disease. Lipoprotein lipase (LPL) is an enzyme that is responsible for the metabolism of core triglycerides of very-low density lipoproteins (VLDL) and chylomicrons in the vasculature. In this study, we explored the structure-activity relationships of our lead compound (C10d) that we have previously identified as an LPL agonist. We found that the cyclopropyl moiety of C10d is not absolutely necessary for LPL activity. Several substitutions were found to result in loss of LPL activity. The compound C10d was also tested in vivo for its lipid lowering activity. Mice were fed a high-fat diet (HFD) for four months, and treated for one week at 10 mg/kg. At this dose, C10d exhibited in vivo biological activity as indicated by lower TG and cholesterol levels as well as reduced body fat content as determined by ECHO-MRI. Furthermore, C10d also reduced the HFD induced fat accumulation in the liver. Our study has provided insights into the structural and functional characteristics of this novel LPL activator

    Primary Cilia Regulates the Directional Migration and Barrier Integrity of Endothelial Cells Through the Modulation of hsp27 Dependent Actin Cytoskeletal Organization

    Get PDF
    Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737orpk/orpk) mouse, with impaired cilia assembly, exhibit a reduction in the actin stress fibers and focal adhesions compared to wild type. In contrast, endothelial cells from polycystin-1 deficient mice (pkd1null/null), with impaired cilia function, display robust stress fibers and focal adhesion assembly. We found that the Tg737orpk/orpk cells exhibit impaired directional migration and endothelial cell monolayer permeability compared to the wild type and pkd1null/null cells. Finally, we found that the expression of heat shock protein 27 (hsp27) and the phosphorylation of FAK are down regulated in the Tg737orpk/orpk cells and overexpression of hsp27 restored both FAK phosphorylation and cell migration. Taken together, these results demonstrate that disruption of the primary cilia structure or function compromises the endothelium through the suppression of hsp27 dependent actin organization and focal adhesion formation, which may contribute to the vascular dysfunction in ciliopathies

    High-content screen using zebrafish (Danio rerio) embryos identifies a novel kinase activator and inhibitor

    Get PDF
    In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10 μM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50 = 4.078 μM) and surprisingly a DAPK1 kinase agonist/activator (EC50 = 39.525 μM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways

    Pioglitazone Treatment Following Spinal Cord Injury Maintains Acute Mitochondrial Integrity and Increases Chronic Tissue Sparing and Functional Recovery

    Get PDF
    Pioglitazone is an FDA-approved PPAR-γ agonist drug used to for treat diabetes, and it has demonstrated neuroprotective effects in multiple models of central nervous system (CNS) injury. Acute treatment after spinal cord injury (SCI) in rats is reported to suppress neuroinflammation, rescue injured tissues, and improve locomotor recovery. In the current study, we additionally assessed the protective efficacy of pioglitazone treatment on acute mitochondrial respiration, as well as functional and anatomical recovery after contusion SCI in adult male C57BL/6 mice. Mice received either vehicle or pioglitazone (10 mg/kg) at either 15 min or 3 hr after injury (75 kDyn at T9) followed by a booster at 24 hr post-injury. At 25 hr, mitochondria were isolated from spinal cord segments centered on the injury epicenters and assessed for their respiratory capacity. Results showed significantly compromised mitochondrial respiration 25 hr following SCI, but pioglitazone treatment that was initiated either at 15 min or 3 hr post-injury significantly maintained mitochondrial respiration rates near sham levels. A second cohort of injured mice received pioglitazone at 15 min post injury, then once a day for 5 days post-injury to assess locomotor recovery and tissue sparing over 4 weeks. Compared to vehicle, pioglitazone treatment resulted in significantly greater recovery of hind-limb function over time, as determined by serial locomotor BMS assessments and both terminal BMS subscores and gridwalk performance. Such improvements correlated with significantly increased grey and white matter tissue sparing, although pioglitazone treatment did not abrogate long-term injury-induced inflammatory microglia/macrophage responses. In sum, pioglitazone significantly increased functional neuroprotection that was associated with remarkable maintenance of acute mitochondrial bioenergetics after traumatic SCI. This sets the stage for dose-response and delayed administration studies to maximize pioglitazone’s efficacy for SCI while elucidating the precise role that mitochondria play in governing its neuroprotection; the ultimate goal to develop novel therapeutics that specifically target mitochondrial dysfunction

    Targeting the Blood-Brain Barrier to Prevent Sepsis-Associated Cognitive Impairment

    Get PDF
    Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB’s role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors

    Extracellular Vesicles Secreted in Response to Cytokine Exposure Increase Mitochondrial Oxygen Consumption in Recipient Cells

    Get PDF
    Extracellular vesicles (EVs) are small, membrane-bound nanoparticles released from most, if not all cells, and can carry functionally active cargo (proteins, nucleic acids) which can be taken up by neighboring cells and mediate physiologically relevant effects. In this capacity, EVs are being regarded as novel cell-to-cell communicators, which may play important roles in the progression of neurodegenerative diseases, like Alzheimer’s disease (AD). Aside from the canonical physical hallmarks of this disease [amyloid β (Aβ) plaques, neurofibrillary tangles, and widespread cell death], AD is characterized by chronic neuroinflammation and mitochondrial dysfunction. In the current study, we sought to better understand the role of tumor necrosis factor-alpha (TNF-α), known to be involved in inflammation, in mediating alterations in mitochondrial function and EV secretion. Using an immortalized hippocampal cell line, we observed significant reductions in several parameters of mitochondrial oxygen consumption after a 24-h exposure period to TNF-α. In addition, after TNF-α exposure we also observed significant upregulation of two microRNAs (miRNAs; miR-34a and miR-146a) associated with mitochondrial dysfunction in secreted EVs. Despite this, when naïve cells are exposed to EVs isolated from TNF-α treated cells, mitochondrial respiration, proton leak, and reactive oxygen species (ROS) production are all significantly increased. Collectively these data indicate that a potent proinflammatory cytokine, TNF-α, induces significant mitochondrial dysfunction in a neuronal cell type, in part via the secretion of EVs, which significantly alter mitochondrial activity in recipient cells

    Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand

    Get PDF
    MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease
    • …
    corecore