154 research outputs found

    Fulcrum: Flexible Network Coding for Heterogeneous Devices

    Get PDF
    Producción CientíficaWe introduce Fulcrum, a network coding framework that achieves three seemingly conflicting objectives: 1) to reduce the coding coefficient overhead down to nearly n bits per packet in a generation of n packets; 2) to conduct the network coding using only Galois field GF(2) operations at intermediate nodes if necessary, dramatically reducing computing complexity in the network; and 3) to deliver an end-to-end performance that is close to that of a high-field network coding system for high-end receivers, while simultaneously catering to low-end receivers that decode in GF(2). As a consequence of 1) and 3), Fulcrum has a unique trait missing so far in the network coding literature: providing the network with the flexibility to distribute computational complexity over different devices depending on their current load, network conditions, or energy constraints. At the core of our framework lies the idea of precoding at the sources using an expansion field GF(2 h ), h > 1, to increase the number of dimensions seen by the network. Fulcrum can use any high-field linear code for precoding, e.g., Reed-Solomon or Random Linear Network Coding (RLNC). Our analysis shows that the number of additional dimensions created during precoding controls the trade-off between delay, overhead, and computing complexity. Our implementation and measurements show that Fulcrum achieves similar decoding probabilities as high field RLNC but with encoders and decoders that are an order of magnitude faster.Green Mobile Cloud project (grant DFF-0602-01372B)Colorcast project (grant DFF-0602-02661B)TuneSCode project (grant DFF - 1335-00125)Danish Council for Independent Research (grant DFF-4002-00367)Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grants MTM2012-36917-C03-03 / MTM2015-65764-C3-2-P / MTM2015-69138-REDT)Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC-2016-20208)Aarhus Universitets Forskningsfond Starting (grant AUFF-2017-FLS-7-1

    Selected-area small-angle electron diffraction

    Full text link
    Selected-area electron diffraction capable of resolving spacings up to 2000 Å from first-order discrete reflections has been achieved using a standard, double-condenser electron microscope. The technique allows photographing of the selected area, at sufficient magnification, that gives rise to the small-angle scattering pattern, in addition to the normal capabilities of obtaining related wide-angle diffraction and wide-angle and small-angle dark-field micrographs. Most, but not all, of the results of discrete and diffuse, small-angle electron diffraction studies from a large variety of specimens including drawn, annealed polyethylene, latex particles, evaporated gold particles, grating replicas, and slit edges have been explained on the basis of the structures observed in the corresponding electron micrographs. Small-angle electron diffraction is found to be more sensitive to defects in the packing of the scattering centres than small-angle X-ray scattering.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44682/1/10853_2004_Article_BF00562952.pd

    Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation

    Get PDF
    Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single component hard-sphere fluid. Extending previous work for pure systems (Gránásy L, Pusztai T, Saylor D and Warren J A 2007 Phys. Rev. Lett. 98 art no 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai T, Bortel G and Gránásy L 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombododecahedral, truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model

    Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: Studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to compare the capacities of biofortified and standard colored beans to deliver iron (Fe) for hemoglobin synthesis. Two isolines of large-seeded, red mottled Andean beans (<it>Phaseolus vulgaris </it>L.), one standard ("Low Fe") and the other biofortified ("High Fe") in Fe (49 and 71 μg Fe/g, respectively) were used. This commercial class of red mottled beans is the preferred varietal type for most of the Caribbean and Eastern and Southern Africa where almost three quarters of a million hectares are grown. Therefore it is important to know the affect of biofortification of these beans on diets that simulate human feeding studies.</p> <p>Methods</p> <p>Maize-based diets containing the beans were formulated to meet the nutrient requirements for broiler except for Fe (Fe concentrations in the 2 diets were 42.9 ± 1.2 and 54.6 ± 0.9 mg/kg). One day old chicks (<it>Gallus gallus</it>) were allocated to the experimental diets (n = 12). For 4 wk, hemoglobin, feed-consumption and body-weights were measured.</p> <p>Results</p> <p>Hemoglobin maintenance efficiencies (HME) (means ± SEM) were different between groups on days 14 and 21 of the experiment (P < 0.05). Final total body hemoglobin Fe contents were different between the standard (12.58 ± 1.0 mg {0.228 ± 0.01 μmol}) and high Fe (15.04 ± 0.65 mg {0.273 ± 0.01 μmol}) bean groups (P < 0.05). At the end of the experiment, tissue samples were collected from the intestinal duodenum and liver for further analyses. Divalent-metal-transporter-1, duodenal-cytochrome-B, and ferroportin expressions were higher and liver ferritin was lower (P < 0.05) in the standard group vs. the biofortified group. <it>In-vitro </it>analysis showed lower iron bioavailability in cells exposed to standard ("Low Fe") bean based diet.</p> <p>Conclusions</p> <p>We conclude that the <it>in-vivo </it>results support the <it>in-vitro </it>observations; biofortified colored beans contain more bioavailable-iron than standard colored beans. In addition, biofortified beans seems to be a promising vehicle for increasing intakes of bioavailable Fe in human populations that consume these beans as a dietary staple. This justifies further work on the large-seeded Andean beans which are the staple of a large-region of Africa where iron-deficiency anemia is a primary cause of infant death and poor health status.</p

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
    corecore