36 research outputs found
Function of FXYD Proteins, Regulators of Na, K-ATPase
: In this short review, we summarize our work on the role of members of the FXYD protein family as tissue-specific modulators of Na, K-ATPase. FXYD1 or phospholemman, mainly expressed in heart and skeletal muscle increases the apparent affinity for intracellular Na+ of Na, K-ATPase and may thus be important for appropriate muscle contractility. FXYD2 or γ subunit and FXYD4 or CHIF modulate the apparent affinity for Na+ of Na, K-ATPase in an opposite way, adapted to the physiological needs of Na+ reabsorption in different segments of the renal tubule. FXYD3 expressed in stomach, colon, and numerous tumors also modulates the transport properties of Na, K-ATPase but it has a lower specificity of association than other FXYD proteins and an unusual membrane topology. Finally, FXYD7 is exclusively expressed in the brain and decreases the apparent affinity for extracellular K+, which may be essential for proper neuronal excitabilit
Les protéines FXYD : nouveaux régulateurs de la Na,K-ATPase
Les protéines FXYD appartiennent à une famille de petites protéines membranaires. Des études récentes suggèrent que six des sept membres de cette famille, FXYD1 (phospholemman), FXYD2 (sous-unité γ de la Na,K-ATPase), FXYD3 (Mat-8), FXYD4 (CHIF), FXYD5 (Ric) et FXYD7, sont des sous-unités auxiliaires de la Na, K-ATPase régulant son activité de manière tissu et isoforme spécifique. Ces résultats soulignent la complexité de la régulation des ions Na+ et K+ par la Na,K-ATPase qui est nécessaire pour assurer les fonctions propres de différents tissus comme la réabsorption du Na+ par le rein, la contraction musculaire et l’excitabilité neuronale. De plus, une mutation dans FXYD2 a été liée à certains cas d’hypomagnésémie, suggérant que des perturbations de la régulation de la Na,K-ATPase par les protéines FXYD seraient impliquées dans des états physiopathologiques. Une meilleure compréhension de ce nouveau mécanisme de régulation de la Na,K-ATPase pourrait nous aider à mieux comprendre son rôle dans les états physiopathologiques. Dans cet article, nous discutons les données les plus récentes sur le rôle des protéines FXYD dans la modulation de la Na, K-ATPase.Members of the FXYD protein family are small membrane proteins which are characterized by an FXYD motif, two conserved glycines and a serine residue. FXYD proteins show a tissue-specific distribution. Recent evidence suggests that 6 out of 7 FXYD proteins, FXYD1 (phospholemman), FXYD2 (γ subunit of Na,K-ATPase), FXYD3 (Mat-8), FXYD4 (CHIF), FXYD5 (Ric) and FXYD7 associate with Na,K-ATPase and modulate its transport properties e.g. its Na+ and/or its K+ affinity in a distinct way. These results highlight the complex regulation of Na+ and K+ transport which is necessary to ensure proper tissue functions such as renal Na+-reabsorption, muscle contractility and neuronal excitability. Moreover, mutation of a conserved glycine residue into an arginine residue in FXYD2 has been linked to cases of human hypomagnesemia indicating that dysregulation of Na,K-ATPase by FXYD proteins may be implicated in pathophysiological states. A better characterization of this novel regulatory mechanism of Na,K-ATPase may help to better understand its role in physiological and pathophysiological conditions
The Third Sodium Binding Site of Na,K-ATPase Is Functionally Linked to Acidic pH-Activated Inward Current
Sodium- and potassium-activated adenosine triphosphatases (Na,K-ATPase) is the ubiquitous active transport system that maintains the Na+ and K+ gradients across the plasma membrane by exchanging three intracellular Na+ ions against two extracellular K+ ions. In addition to the two cation binding sites homologous to the calcium site of sarcoplasmic and endoplasmic reticulum calcium ATPase and which are alternatively occupied by Na+ and K+ ions, a third Na+-specific site is located close to transmembrane domains 5, 6 and 9, and mutations close to this site induce marked alterations of the voltage-dependent release of Na+ to the extracellular side. In the absence of extracellular Na+ and K+, Na,K-ATPase carries an acidic pH-activated, ouabain-sensitive "leak” current. We investigated the relationship between the third Na+ binding site and the pH-activated current. The decrease (in E961A, T814A and Y778F mutants) or the increase (in G813A mutant) of the voltage-dependent extracellular Na+ affinity was paralleled by a decrease or an increase in the pH-activated current, respectively. Moreover, replacing E961 with oxygen-containing side chain residues such as glutamine or aspartate had little effect on the voltage-dependent affinity for extracellular Na+ and produced only small effects on the pH-activated current. Our results suggest that extracellular protons and Na+ ions share a high field access channel between the extracellular solution and the third Na+ binding sit
A novel family of transmembrane proteins interacting with β subunits of the Na,K-ATPase
We characterized a family consisting of four mammalian proteins of unknown function (NKAIN1, 2, 3 and 4) and a single Drosophila ortholog dNKAIN. Aside from highly conserved transmembrane domains, NKAIN proteins contain no characterized functional domains. Striking amino acid conservation in the first two transmembrane domains suggests that these proteins are likely to function within the membrane bilayer. NKAIN family members are neuronally expressed in multiple regions of the mouse brain, although their expression is not ubiquitous. We demonstrate that mouse NKAIN1 interacts with the β1 subunit of the Na,K-ATPase, whereas Drosophila ortholog dNKAIN interacts with Nrv2.2, a Drosophila homolog of the Na,K-ATPase β subunits. We also show that NKAIN1 can form a complex with another β subunit-binding protein, MONaKA, when binding to the β1 subunit of the Na,K-ATPase. Our results suggest that a complex between mammalian NKAIN1 and MONaKA is required for NKAIN function, which is carried out by a single protein, dNKAIN, in Drosophila. This hypothesis is supported by the fact that dNKAIN, but not NKAIN1, induces voltage-independent amiloride-insensitive Na+-specific conductance that can be blocked by lanthanum. Drosophila mutants with decreased dNKAIN expression due to a P-element insertion in the dNKAIN gene exhibit temperature-sensitive paralysis, a phenotype also caused by mutations in the Na,K-ATPase α subunit and several ion channels. The neuronal expression of NKAIN proteins, their membrane localization and the temperature-sensitive paralysis of NKAIN Drosophila mutants strongly suggest that this novel protein family may be critical for neuronal functio
Dynamic expression of FXYD6 in the inner ear suggests a role of the protein in endolymph homeostasis and neuronal activity.
A key protein in the production and in the maintenance of the endocochlear potential is the Na,K-ATPase. Previously, we have shown that FXYD6 is a modulator of the Na,K-ATPase expressed in the inner ear (Delprat et al. [2007] J Biol Chem 282:7450-7456). To investigate the potential role of FXYD6 in inner ear function, we studied the developmental expression of FXYD6. Reverse transcriptase-polymerase chain reaction analysis demonstrates that FXYD6 is present as two splice variants. Both variants coimmunoprecipitate with Na,K-ATPase after expression in Xenopus oocytes. Immunohistochemistry of the cochlea (from birth to postnatal day 30) shows that FXYD6 is expressed in several epithelial cells important for endolymph homeostasis. Marked similarities were found in the developmental expression patterns of FXYD6 and Na,K-ATPase, suggesting functional cooperation between the two proteins in the generation and maintenance of the endocochlear potential and ion composition of the endolymph. Developmental Dynamics 236:2534-2540, 2007. (c) 2007 Wiley-Liss, Inc
Structural organization of alpha-subunit from purified and microsomal toad kidney (Na+ + K+)-ATPase as assessed by controlled trypsinolysis
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906)
FXYD3 (Mat-8), a New Regulator of Na,K-ATPase
Four of the seven members of the FXYD protein family have been identified as specific regulators of Na,K-ATPase. In this study, we show that FXYD3, also known as Mat-8, is able to associate with and to modify the transport properties of Na,K-ATPase. In addition to this shared function, FXYD3 displays some uncommon characteristics. First, in contrast to other FXYD proteins, which were shown to be type I membrane proteins, FXYD3 may have a second transmembrane-like domain because of the presence of a noncleavable signal peptide. Second, FXYD3 can associate with Na,K- as well as H,K-ATPases when expressed in Xenopus oocytes. However, in situ (stomach), FXYD3 is associated only with Na,K-ATPase because its expression is restricted to mucous cells in which H,K-ATPase is absent. Coexpressed in Xenopus oocytes, FXYD3 modulates the glycosylation processing of the β subunit of X,K-ATPase dependent on the presence of the signal peptide. Finally, FXYD3 decreases both the apparent affinity for Na(+) and K(+) of Na,K-ATPase