57 research outputs found

    Test of the He-McKellar-Wilkens topological phase by atom interferometry. Part I: theoretical discussion

    Full text link
    We have recently tested the topological phase predicted by He and McKellar and by Wilkens: this phase appears when an electric dipole propagates in a transverse magnetic field. In the present paper, we first recall the physical origin of this phase and its relations to the Aharononov-Bohm and Aharonov-Casher phases. We then explain possible detection schemes and we briefly describe the lithium atom interferometer we have used for this purpose. Finally, we analyze in great detail the phase shifts induced by electric and magnetic fields acting on such an interferometer, taking into account experimental defects. The experiment and its results are described in a companion paper

    Optical pumping of a lithium atomic beam for atom interferometry

    Full text link
    We apply optical pumping to prepare the lithium beam of our atom interferometer in a single hyperfine-Zeeman sublevel: we use two components of the D1-line for pumping the 7Li atoms in a dark state F,mF=+2 (or -2) sublevel. The optical pumping efficiency has been characterized by two techniques: state-selective laser atom deflection or magnetic dephasing of the atom interferometer signals. The first technique has not achieved a high sensitivity, because of a limited signal to noise ratio, but magnetic dephasing signals have shown that about 95% of the population has been transferred in the aimed sublevel, with similar results for three mean velocities of the atomic beam covering the range 744-1520m/s

    Test of the He-McKellar-Wilkens topological phase by atom interferometry. Part II: the experiment and its results

    Full text link
    In this paper, we describe an experimental test of the He-McKellar-Wilkens (HMW) topological phase with our lithium atom interferometer. The expected value of the HMW phase shift in our experiment is small and its measurement was difficult because of stray phase shifts due to small experimental defects. We start by describing our setup and we characterize the effects of the electric and magnetic fields needed to observe the HMW effect. Then, we develop a model of our interferometer signals including all the defects we have identified. After various tests of this model, we use it to suppress the largest part of the stray phase shifts. We thus obtain a series of measurements of the HMW phase: the results are 31% larger than expected and this discrepancy is probably due to some limitations of our model

    Foreword

    Get PDF

    Measurement of the Aharonov-Casher geometric phase with a separated-arm atom interferometer

    Full text link
    In this letter, we report a measurement of the Aharonov-Casher (AC) geometric phase with our lithium atom interferometer. The AC phase appears when a particle carrying a magnetic dipole propagates in a transverse electric field. The first measurement of the AC phase was done with a neutron interferometer in 1989 by A. Cimmino \textit{et al.} (Phys. Rev. Lett. \textbf{63}, 380, 1989) and all the following experiments were done with Ramsey or Ramsey-Bord\'e interferometers with molecules or atoms. In our experiment, we use lithium atoms pumped in a single hyperfine-Zeeman sublevel and we measure the AC-phase by applying opposite electric fields on the two interferometer arms. Our measurements are in good agreement with the expected theoretical values and they prove that this phase is independent of the atom velocity.Comment: 6 page

    Measurement of the Boltzmann constant by the Doppler broadening technique at a 3,8x10-5 accuracy level

    Full text link
    In this paper, we describe an experiment performed at the Laboratoire de Physique des Lasers and dedicated to an optical measurement of the Boltzmann constant. With the proposed innovative technique, determining comes down to an ordinary frequency measurement. The method consists in measuring as accurately as possible the Doppler absorption profile of a rovibrational line of ammonia in thermal equilibrium. This profile is related to the Maxwell-Boltzmann molecular velocity distribution along the laser beam. A fit of the absorption line shape leads to a determination of the Doppler width proportional to sqrt(kT) and thus to a determination of the Boltzmann constant. The laser source is an ultra-stable CO2 laser with a wavelength . The absorption cell is placed in a thermostat keeping the temperature at 273.15 K within 1.4 mK. We were able to measure with a relative uncertainty as small as 3.8x10-5, which represents an improvement of an order of magnitude for an integration time comparable to our previous measurement published in 2007 [1

    Measurement of the sensitivity function in time-domain atomic interferometer

    No full text
    submitted to IEEE Trans. Instrum. Meas.We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave-packets. The sensitivity function is calculated in the case of a three pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at BNM-SYRTE. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers, as well as by residual vibrations. We evaluate the performance that could be obtained with state of the art quartz oscillators, as well as the impact of the residual phase noise of the phase-lock loop. Requirements on the level of vibrations is derived from the same formalism

    Off-resonant Raman transitions impact in an atom interferometer

    No full text
    International audienceWe study the influence of off-resonant two photon transitions on high precision measurements with atom interferometers based on stimulated Raman transitions. These resonances induce a two photon light shift on the resonant Raman condition. The impact of this effect is investigated in two highly sensitive experiments: a gravimeter and a gyroscope-accelerometer. We show that it can lead to significant systematic phase shifts, which have to be taken into account in order to achieve best performances in term of accuracy and stability
    • …
    corecore