3,685 research outputs found

    A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity

    Get PDF
    In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution, are also reporte

    Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM

    Get PDF
    © EDP Sciences, SMAI 2011This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in Rn (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc := Rn\ ̄Ω. The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD) given in terms of boundary integral operators. The resulting variational formulation becomes a variational inequality with a linear operator. Then we treat the corresponding numerical scheme and discuss an approximation of the NtD mapping with an appropriate discretization of the inverse Poincar´e-Steklov operator. In particular, assuming some abstract approximation properties and a discrete inf-sup condition, we show unique solvability of the discrete scheme and obtain the corresponding a-priori error estimate. Next, we prove that these assumptions are satisfied with Raviart- Thomas elements and piecewise constants in Ω, and continuous piecewise linear functions on Γ. We suggest a solver based on a modified Uzawa algorithm and show convergence. Finally we present some numerical results illustrating our theory

    Loud and Trendy: Crowdsourcing Impressions of Social Ambiance in Popular Indoor Urban Places

    Get PDF
    New research cutting across architecture, urban studies, and psychology is contextualizing the understanding of urban spaces according to the perceptions of their inhabitants. One fundamental construct that relates place and experience is ambiance, which is defined as "the mood or feeling associated with a particular place". We posit that the systematic study of ambiance dimensions in cities is a new domain for which multimedia research can make pivotal contributions. We present a study to examine how images collected from social media can be used for the crowdsourced characterization of indoor ambiance impressions in popular urban places. We design a crowdsourcing framework to understand suitability of social images as data source to convey place ambiance, to examine what type of images are most suitable to describe ambiance, and to assess how people perceive places socially from the perspective of ambiance along 13 dimensions. Our study is based on 50,000 Foursquare images collected from 300 popular places across six cities worldwide. The results show that reliable estimates of ambiance can be obtained for several of the dimensions. Furthermore, we found that most aggregate impressions of ambiance are similar across popular places in all studied cities. We conclude by presenting a multidisciplinary research agenda for future research in this domain

    A flexible mathematical model for the planning and designing of a sporting fixture by considering the assignment of referees

    Get PDF
    Indexación: Scopus.This paper deals with the problems faced with the designing and planning of a sporting fixture considering correct referee assignments. A non-linear binary program model is proposed to solve the problems, which aims to minimize the sums of the differences that exist between the requirements of each match and the quality of the referee assigned achieving the design of the most adequate referee for each match. The efficiency of the proposed model is proved using some real data obtained from various fixtures for sports such as soccer, volleyball, and basketball. The mathematical model is solved by using CPLEX 12.7.0., which allows the automatic linearization of the problems. The results obtained demonstrate the efficiency of the proposed methodology for tackling problems, as well as its extension to other sporting disciplines, which require a similar type of planning. Similarly, given the robust nature of the proposed model, it is possible to implement other objective functions in accordance with the requirements of each league. © 2019 by the authors; licensee Growing Science, Canada.http://growingscience.com/beta/ijiec/2960-a-flexible-mathematical-model-for-the-planning-and-designing-of-a-sporting-fixture-by-considering-the-assignment-of-referees.htm
    corecore