902 research outputs found

    Further structural constraints and uncertainties of a thin laterally varying ultralow-velocity layer at the base of the mantle

    Get PDF
    Constraints and uncertainties are presented for modeling of an ultralow-velocity zone layer (ULVZ) at the base of Earth's mantle using an SKS wave with small segments of P wave diffraction at the SKS core entry and exit locations, called SP_dKS. Source or receiver effects are ruled out as causes for the SP_dKS anomalies used to map ULVZ structure, since systematic SP_dKS-SKS travel time moveout behavior is present in profiles of recordings of a given earthquake at many seismographic stations and also for many events recorded at one station. The southwest Pacific region produces strong variability in observed SP_dKS/SKS amplitude ratios (compared to synthetic seismograms), which geographically corresponds to an anomalous ULVZ region. Accurate determination of absolute ULVZ thicknesses requires knowledge of, in addition to magnitude of P wave velocity (V_p) reduction in the layer, the magnitude of S wave velocity (V_S) reduction and density (ρ) perturbation (if any). Synthetic seismogram experiments demonstrate several key points regarding uncertainties and constraints in modeling ULVZ structure: (1) thicker layers (up to 300 km thick) with mild reductions (e.g., −2.5 to −5.0%) cannot reproduce the anomalous SP_dKS behavior seen in the data; (2) for ULVZ layers less than 10 km thick, strong trade-offs exist between discontinuous velocity reductions and linear gradient reductions over a thicker zone; (3) uncertainties preclude precise determination of magnitude of δV_P and δV_S reductions, as well as the δV_S:δV_P ratio; (4) large density increases within the ULVZ (e.g., up to 60% and more) can efficiently broaden and delay the peak of the energy that we identify as SP_dKS for models with strong velocity reductions in the layer; (5) models with extreme Q reductions in the ULVZ can affect SP_dKS waveforms, and dampen spurious ringing energy present in Sd waveshapes due to the ULVZ; and (6) the minimum required V_p reduction for the most anomalous data (around −10%) trades off with thinner ULVZ structures containing larger velocity reductions (with possible density increases as well)

    Geophysical aspects of very long baseline neutrino experiments

    Get PDF
    Several proposed experiments will send beams of neutrinos through the Earth along paths with a source-receiver distance of hundreds or thousands of kilometers. Knowledge of the physical properties of the medium traversed by these beams, in particular the density, will be necessary in order to properly interpret the experimental data. Present geophysical knowledge allows the average density along a path with a length of several thousand km to be estimated with an accuracy of about Âą5\pm 5 per cent. Physicists planning neutrino beam experiments should decide whether or not this level of uncertainty is acceptable. If greater accuracy is required, intensive geophysical research on the Earth structure along the beam path should be conducted as part of the preparatory work on the experiments.Comment: 8 pages, uses elsart.cls. Talk given at 3rd International Workshop on Neutrino Factory based on Muon Storage Rings (NuFACT'01), Tsukuba, Japan, 24-30 May 200

    Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific

    Get PDF
    We explore lowermost mantle structure beneath the Pacific with long‐period recordings of the seismic core phases SKS, SP_dKS, and SKKS from 25 deep earthquakes. SP_dKS and SKKS are anomalously delayed relative to SKS for lower mantle paths beneath the southwest Pacific. Late SP_dKS arrivals are explained by a laterally varying mantle‐side boundary layer at the CMB, having P‐velocity reductions of up to 10% and thickness up to 40 km. This layer is detected beneath a tomographically resolved large‐scale low velocity feature in the lower mantle beneath the central‐Pacific. SKS, SP_dKS, and SKKS data for the generally faster‐than‐average circum‐Pacific lower mantle are well‐fit by models lacking any such low‐velocity boundary layer. The slow boundary layer beneath the central Pacific may be a localized zone of partial melt, or perhaps a chemically distinct layer, with its location linked to overlying upwelling motions

    Preliminary observations from the use of US-Soviet Joint Seismic Program data to model upper mantle triplications beneath Asia

    Get PDF
    New short-period waveform data from the US-Soviet Joint Seismic Program (JSP) make possible investigations of Asian upper mantle structure. the goal of this paper is to explore the potential use of the newly available JSP data to gain a qualitative view of upper mantle structure beneath Asia, and to facilitate more detailed future detailed future upper mantle studies. In a reconnaissance approach, waveform upper mantle studies. In a reconnaissance approach, waveform predictions from upper mantle P-wave velocity models of previous studies are compared to the JSP data to investigate regional differences in the central Asian upper mantle. Data coverage brackets the upper mantle triplications with excellent multi-source-to-stations sections. the abundance of data for controlled source-receiver geometries and the impulsive nature of the arrivals enable us to stack seismograms to improve signal-to-noise ratio. Arrivals from the 400 and 670 km discontinuities are apparent in the data and are compared to predictions of the mantle models. the principal result is that, for the regions studied, paths through cratonic regions of Asia are compatible with shield-type models, while paths through highly deformed regions of Asia are compatible with models derived for tectonically active regions, suggesting large lateral variations beneath the Eurasian continent. Use of the JSP data in a comparative approach is fast and simple, and proves effective in obtaining a first-order understanding of the Asian upper mantle. This result also presents the potential for qualitative studies elsewhere with digital portable stations

    Modeling two-dimensional structure at the core-mantle boundary

    Get PDF
    Recent studies of SKS waveform modeling emphasize the strong variation of seismic properties at the core-mantle boundary (CMB) and the need for two-dimensional and three-dimensional waveform modeling capabilities. In particular, the bifurcation of SKS into SP _dKS and SKP _dS near 110° shows strong regional variations. The first of these phases has a P wave diffraction along the bottom of the mantle near the source, while the latter phase occurs at the receiver end. Generalized ray theory proves effective in generating theoretical seismograms in this type of problem because each of these diffractions is associated with a particular transmission coefficient: T_(sp) which transmits shear waves into primary waves when crossing the CMB and T_(sp) which transmits the primary waves back into shear waves at the receiver end. Each region can then be isolated and have its separate fine structure, sharp or gradational. Two classes of boundaries are explored: the CMB as a simple, sharp interface and the CMB with a very low velocity transition layer (10% slower than reference models). The two diffractions produced by these structures have diagnostic arrival times and wave shapes and when combined with the geometric SKS produce distinct waveform characteristics not easily generated by other means. Since the ray paths associated with these three phases are virtually identical in the mantle and only differ along a short sample of CMB and in the one-dimensional fluid core, we can isolate the small localized CMB region sampled. Thus the waveform character of the extended SKS in the range of 105° to 120° becomes an excellent CMB probe which we demonstrate on a small sample of observations from the Fiji-Tonga region as recorded in North America

    Time Domain Regional Discriminants

    Get PDF
    The time and frequency domains are equivalent displays of seismic trace, information, though some qualities of the signal are more easily observed in one domain than the other. The relative frequency excitation of Lg, for instance, is most easily viewed in the frequency domain, but such waveform qualities as the sequence in which pulses arrive in the wave train or the sharpness of pulse onset are most easily studied in the time domain (Murphy and Bennett, 1982, Blandford, 1981). Because of the tremendous complexity of high frequency regional data, most attempts at using it for discrimination purposes have involved analysis of the frequency content of the various arrivals either through transforming selected windows or through multiple bandpass filtering. We report here on our initial attempts to explore the alternative and to discriminate events using those waveform characteristics most easily observed in the time domain. A second advantage of time domain analysis approaches is that they permit a deeper insight into the physical processes creating a seismic signal's character. For this reason, they can be more e3silv used to evaluate the transportabilty of a discriminant to varying geophysical and tectonic regimes. This is an especially important feature in the development of regional discriminants. The most prominent and successful spectral regional discriminants have been empirically developed. This means that they must be redeveloped and reverified in each new area. As we shall show in the following, through rigorous time domain analysis such features as regional depth phases can be identified and used to discriminate. Discriminants based on such simple physical features as source depth should be transportable anywhere. In work recently completed under the treaty verification program, we have proved that such time domain discriminants do exist. In analyzing a test discrimination data set from the western U. S., we have discovered that the onset of P_n is always very similar for explosions and that few earthquakes have this unique waveform character. This information can be constructed into a simple discrimination scheme by testing the correlation of observed P_n waveform onsets with average waveforms observed from explosions. High correlations indicate explosions and low correlations earthquakes. We have also discovered that the regional phase P_g is actually composed of a sequence of sub-arrivals which correspond to successively higher orders of reverberation in the crust. In realistic crust models, the depth phases play an important role in the waveshapes of these sub-arrivals. By selecting an appropriate frequency band to analyze, we have been able to accurately model this type of data from explosions in the western United States. Over the very relevant regional distance ranges of 200 to 600 km, it appears that a discrimination procedure very similar to the one which is known to work for P_n will also be effective for P_g. We are investigating whether similar discriminants can be constructed based on the phases S_n and S_g in areas where those phases are prominent arrivals

    Time Domain Regional Discriminants

    Get PDF
    The time and frequency domains are equivalent displays of seismic trace, information, though some qualities of the signal are more easily observed in one domain than the other. The relative frequency excitation of Lg, for instance, is most easily viewed in the frequency domain, but such waveform qualities as the sequence in which pulses arrive in the wave train or the sharpness of pulse onset are most easily studied in the time domain (Murphy and Bennett, 1982, Blandford, 1981). Because of the tremendous complexity of high frequency regional data, most attempts at using it for discrimination purposes have involved analysis of the frequency content of the various arrivals either through transforming selected windows or through multiple bandpass filtering. We report here on our initial attempts to explore the alternative and to discriminate events using those waveform characteristics most easily observed in the time domain. A second advantage of time domain analysis approaches is that they permit a deeper insight into the physical processes creating a seismic signal's character. For this reason, they can be more e3silv used to evaluate the transportabilty of a discriminant to varying geophysical and tectonic regimes. This is an especially important feature in the development of regional discriminants. The most prominent and successful spectral regional discriminants have been empirically developed. This means that they must be redeveloped and reverified in each new area. As we shall show in the following, through rigorous time domain analysis such features as regional depth phases can be identified and used to discriminate. Discriminants based on such simple physical features as source depth should be transportable anywhere. In work recently completed under the treaty verification program, we have proved that such time domain discriminants do exist. In analyzing a test discrimination data set from the western U. S., we have discovered that the onset of P_n is always very similar for explosions and that few earthquakes have this unique waveform character. This information can be constructed into a simple discrimination scheme by testing the correlation of observed P_n waveform onsets with average waveforms observed from explosions. High correlations indicate explosions and low correlations earthquakes. We have also discovered that the regional phase P_g is actually composed of a sequence of sub-arrivals which correspond to successively higher orders of reverberation in the crust. In realistic crust models, the depth phases play an important role in the waveshapes of these sub-arrivals. By selecting an appropriate frequency band to analyze, we have been able to accurately model this type of data from explosions in the western United States. Over the very relevant regional distance ranges of 200 to 600 km, it appears that a discrimination procedure very similar to the one which is known to work for P_n will also be effective for P_g. We are investigating whether similar discriminants can be constructed based on the phases S_n and S_g in areas where those phases are prominent arrivals

    Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    Get PDF
    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth

    Markers of bone turnover for the management of patients with bone metastases from prostate cancer

    Get PDF
    Although increased bone formation is a prominent feature of patients with osteosclerotic metastases from prostate cancer, there is also some evidence for increased bone resorption. The aim of this study was to compare the clinical utility of new bone resorption markers to that of bone formation in patients with bone metastases from prostate cancer before and after bisphosphonate treatment. Thirty-nine patients with prostate cancer and bone metastasis, nine patients with prostate cancer without bone metastases, nine patients with benign prostatic hyperplasia and 355 healthy age-matched men were included. Urinary non-isomerized (α CTX) and β isomerized (β CTX) type I collagen C-telopeptides (CTX) and a new assay for serum CTX were used to assess bone resorption. Bone formation was determined by serum osteocalcin, serum total (T-ALP) and bone (BAP) alkaline phosphatase and serum type I collagen C-terminal propeptide (PICP). Fourteen patients with bone metastases were also evaluated 15 days after a single injection of the bisphosphonate pamidronate (120 mg). Levels of all bone formation and bone resorption markers were significantly (P< 0.006–0.0001) higher in patients with prostate cancer and bone metastasis than in patients with benign prostatic hyperplasia, patients with prostate cancer without bone metastases and healthy controls. In patients with bone metastases the median was increased by 67% for serum osteocalcin, 128% for T-ALP, 138% for BAP, 79% for PICP, 220% for urinary α CTX, 149% for urinary β CTX and 214% for serum CTX. After bisphosphonate treatment all three resorption markers significantly decreased by an average of 65% (P = 0.001), 71% (P = 0.0010) and 61% (P = 0.0015) for urinary α CTX, urinary β CTX and serum CTX, respectively, whereas no significant change was observed for any bone formation markers. Patients with prostate cancer and bone metastases exhibit a marked increase in bone resorption, which decreases within a few days of treatment with pamidronate. These findings suggest that these new resorption markers may be useful for the management of these patients. © 2000 Cancer Research Campaig

    Towards Simulating a Realistic Planetary Seismic Wavefield: The Contribution of the Megaregolith and Low-Velocity Waveguides

    Get PDF
    Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic codes is generated by the presence of the low velocity megaregolith, and that the diffuse arrivals are a combination of scattered energy and multiple reverberations within this layer. The 3-D modeling indicates the extreme surface topography of the Moon adds only a small contribution to scattering effects, though local geology may play a larger role. We also study the effects of the megaregolith on core reflected and converted phases and other body waves. Our analysis indicates detection of core interacting arrivals with a polarization filter technique is robust and lends the possibility of detecting other body waves from the Moon
    • …
    corecore