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INTRODUCTION

The time and frequency domains are equivalent displays o. seismic traca, information, though

some qualities of the signal are more ea3ily observed in one domain than the other. The relative

frequency excitation of Lg, for instance, is most easily ,,iewed in the frequency domain, but such

waveform qualities as the sequence in which pulses arrive in the wave train or the sharpness of

pulse onset are most easily studied in the time domain (vlurphy and Bennett, 1982, Blandford,

1981). Because of the tremendous complexity of high frequeijcy regional data, most attempts at

using it for discrimination purposes have involved analysis of the frequency content of the various

arrivals either through transforming selected windows or through multiple bandpass filtering. We

report here on our initial attempts to explore the alternative and to discriminate events using those

waveform characteristics most easily observed in the time domain.

A second advantage of time domain analysis approaches is that they permit a deeper insight

into the physical processes creating a seismic signal's character. For this reason, they can be more

e3silv used to evaluate the transportabilty of a discriminant to varying geophysical and tectonic

regimes. This is an especially important feature in the development of regional discriminants. The

most prominent and successful spectral regional discriminants have been empirically developed.

This means that they must be redeveloped and reverified ir. e,.ch new area. As we shall show in

the following, through rigorous time domain analysis such feLtures as regional depth phases can

be identified and used to discriminate. Discriminants based on such simple physical features as

source depth should be transportable anywhere.

In work recently completed under the treaty verification program, we have proved that such

time domain discriminants do exist. In analyzing a test discrimination data set from the western

U. S., we have discovered that the onset of Pn is always very similar for explosions and that few

earthquakes have this unique waveform character. This inforin.,tion can be constructed into a

simple discrimination scheme by testing the correlation of observed P. waveform onsets with

average waveforms observed from explosions. High correlations indicate explosions and low

correlations earthquakes. We have also discovered that the regional phase Pg is actually composed

I



of a sequence of sub-arrivals which corresponrd to successively higher orders of reverberation in

the crust. In realistic crust models, the depth phases play an important rol" in the w'Aveshapes of

these sub-arrivals. By selecting an appropriate frequency band to analyze, we have been able to

accurately model this type of data from explosions in the western United States. O'er the very

relevant regional distance ranges of 200 to 600 kni, it appears that a discrimination procedure very

similar to the one which is known to work for Pn will also be effective for Pg. We are investigating

whether similar discriminants can be constructed based on the phases S, and Sg in areas where

those phases are prominent arrivals.



RECENTLY DEVELOPED WYAV-EFORM DISCR.IMILNANTS

Though the technology for recording broad band seismic data digitally has existed for some

time, a good regional net of stations surrounding NTS has only t-een put into place recentlv (Figure

I). Several different types of stations and seismometers are i•n the net including DNWWSSN (JAS,

AI.Q or ANN40), LLNL broad bands (ELK, MNV, LAC, KNMl and the new Streckeisens installed

by Caltech (PAS) and UCSD (PFO). Much recent effort at Woodward Clyde has been directed at

developing short period regional discriminants that work on daita from this net. The situation of

having data available from many sources ,,eiv close to each other which are similar in character

.tuch as NIS explosions is a unique one. l'he timing and locations of the events are known exactly.

This turns any single regional station in the western U. S. into the equivalent of a regional seismic

array. Any of the standard array processing techniques can be used with the role of sources and

stations being reversed. There is some variability in source time history and near source structure,

but on the other hand the receiver structure is constant. We betan our previous work by simply

obtaining suites of records from each of the stations in the net and summing to form stable averages.

In so doing, we observed important features in the average Pn and the average Pg waveforms which

could each be used to develop time domain discriminants. Our success to date is summarized

below.

The n.i Waveform Discriminant Our initial success in developing a Pn waveform discriminant was

rooted in past experience with modeling waveforms of teleseismic P waves from nuclear explosions.

Figure 2 is taken from Burdick et al. (1984). It shows observed and synthetic, long and short

period records from the nuclear test, CANNIK IN. Arrows on the left of the figure draw attention

to a subtle feature in the short period records which is associated with the arrival of the phase pP.

The records where the feature appears are assumed to be along high Q paths ýt* = 0.8 s). Along

Io% !r Q paths the feature washes out. The long periods are not affected by pP in a clearly visible

way.
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This previous experience with the effects of pP on teleseismic short period P waves provt-d

valuable in interpreting regional P,, waxeftrnrs. As it happens, some of the stations in the western

U.S. digital net have a band-limited response equivalent to the WWSSN stations in Figure 2. To

make a uniform comparison, all of the records its the data base were transformed to short perioc

W\VSSN instrument response. When the digital signals from NIS explosions were averaged, it was

observed that the average Pn waveform was very s!milar to those on the left of 1-igure 2 although

much shorter in period. Average wxaveforms at 5 stations in the digital net are shov. n in Figure

3 The consistent splitting of th, second upswing is indicated by the arrows. *rhe clear Implication

is that the physics oi the vave piopagation of short period teleseismic P and short period P, is

\,er\ comparable. More precisely, the interaction of pP with P must be similar in the two instances.

Ihis is not unreasonable in that the apparent ýelocity of Pn is about 8 kms and that ot teleseismic

P only increases to about 12 km/s at 300 The associated change in pP timing and amplitude is

small. The implications for regional discrimination are clear. Only very shallow sources like

explosions will have depth phases at very short times. Farrhqunke depth phases will be much !ater.

To test the performance of this discriminant, we assembied a set of Pn waveforms from small

earthquakes near NIS, windowed out the first three seconds of P,, and measured the correlation

with the average Pr, waveforms of explosions like those shown in Figu.e 3 A similar procedure

was carried our on the explosion data base. rhe results from one typical station, JAS are shown

in Figure 4. The explosions are displaed as stars and the earthquakes as crosses. The ieparatiwn

Of th- ,'- :!".1' ons is good en,'ugh to warrant more stud, of this discritiiant.

i he d;scrimination capabilit\ illustrated in Figure 4 only demonstrates that the P, waseform

of explosions is stable at JAS and consistently different from earthquake waveforms. However,

the •imilar*t. of the wa,,cforms in Figure 3 suggests that the shape of the explosion waveform is

consistent from station to station. That this is indeed the case is shown in Figure 5 where the

average JAS explosion waveform has been correlated with the explosion data base at MNV.
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.Moderately good event discrimination is still possible. These studies suggest that one method to

achieve discrimination with a regional net will be to continuously monitor the waveform of Pn

onset at all of the stations and to test in an objective fashion for the presence of depth phases.

The small shoulder on the second upswing of the waveforms in Figure 3 seems to be

relatively subtle feature on which to base a discr*minant. However, its apparently subtle nature

is due to the particular response of the WWSSN instrument. To demonstrate this, we carried out

a forward modeling study of the broad band P, wa'eforms from the LLNL stations designed to

determine the true size of the pP art ival. A typical result is shown in Figure 6 where the wavefoims

of four Pahute events as recorded at MINV are displayed. The data are shown as solid lines and

synthetics for an appropriate crustal model and explosion source are shown as dashed lines. Becaase

the instruments are broad band, decon~olving the response out is a stable operation which has been

carried out. The traces shown are true ground velocity. The arrows indicate the arrival of pP.,

in the data and syvnthetics. The observed pP. is consistently much later than the elastic predictions.

This discrepancy was observed for all esents at all stations where the waveform:, could be modeled.

In many instances, it was observed that pP was as much as two times larger than the elastic

l:redictions Similar results (pP late and amplified) have been reported in most studies where pP

times from . uclear tests have been measured. In our final report for our previous work (B'urdick

et al. 1988), we showed that this phenomenon could be explained in terms of spall. These studies

are reievant here in two ways. First. effective pP (that is pPl plus spall) is a large arrival, and it

is sensible :o attempt to continuouslh ,.xanine signal onsets for its presence in order to discriminate.

Second, synthetic modeling ot the P,,-pP,, interaction is very feasible, and it is reasonable to attempt

its use in automated discriminition 5chemes

Li : Discriminra• ThL ' ;..d nfew -hort period regiona! discriminant we are developing and

testing in the western L' based on the observation that the Pg phase turns out to containr a

sequence uf sub-arrivals. Thte. c'or'-spond to sucýcessive rexerberntions of energy in the cruistal

,i•ve guide, an. we have namud them cru.iztal resonance phases. Our initial evidence as to their

existence and character emerged when we 'jeraged observations of suites o1 events at a single
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station just as did the evidence for pPn. "Though there were some indications of a series of arrivals

pumping energy into the Pg coda in some of the raw data, the effects of scattering and othe:

variations between events seems to dominate. This has long been known to be the greatest difficult-,

in interpreting regional data. To suppress the scattering effects, we aligned the signals very caiefullý

at Pn time and summed. The Yucca and Pahute data were treated separately. This procedure

neglects the difference in slowness, but our results indicate that this is a reasonable approach

Some of the clearest evidence for the phases came from ALQ. The res" It for Yucca eCents is

shO',n in Figure 7 where we display a progressive sum of records. Each subsequent line shows

the effect of adding in an addition:i record. The final sum clearly indicates that there are coherent

resonance phases at frequencies of se,,eral hz. The first two crustal resonance phases develop

almost immediately indicating that the, are ',ery coherent. A third appears b, the time 4 traces

are added in and the sum has stabilized by the time 8 are added in Actually. this is a relatively

rapid rate of stabilization indicating that the resonance phases are very coherent for this path. Al

the bottom, we show a synthetic for a simple layer o'er a half space model to indicate that the

resonance phases have approximately the character we expect.

Since it is clear that these reverberation phases exist, it ss natural to explore the possibility

that they could be useful in discrimination. There have been many studies of the relative properties

of the long-duration, composite phases such as Pg or S. Now that we know that the complete

phases are built up of sub pulses, we can attempt to base discriminants on their properties. A

large number of possibilities exist. Any discriminant which has been tried on the composite pulses

can be tested on the sub pulses. These could include particle motion, relative amplitude, frequency

content or sharpness, To illustrate tiat important variations in the character of the resonance

phases e.xist, we show the three ,omponeint record of the Pahute event FIERRA at A.NMO in

Figure 8. The instrument response is short period MYWSSN. The resonance phases are clear on

the vertical, but vary markedly ini their character on the horizntals. The second resonance phase

appears to he carr.ing much inure S ernirg,. As we will show in the follo%,ing, the firt crustal

resonance appears to be an ef Iciint energy clhannel for P .ind later resonances utr S ()ne pwoy,iIIPI,
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method for discriminating using Pg may be to measure the relative amount cf scattered SV energy

between the first and third resonance phases. There should be more scattered S in earthquakes.

In the following, we shall discuss the development of a tine domain discriminant )Lsed on time

domain correlations of longer period (2 sec. and greater) energ., but the point here is that there

are a number of alternate discriminants possible.

We began our work in the western US by attempting to identify a frequency band in which

the stable resonance phases (resolved in Figure 7 by stacking) could be obserxed consistently in

individual records. This would naturally occur in a somewhat longer period band. We obtained

suites of explosion records from each of the stations in the digital net and experimented with a

number of bandpass filters. We achieved the desired stability using the WWSSN long period response

modified by a high pass and a low pass third order butterworth filter. The long period butterworth

cutoff -va.s positioned at 10 sec and the low pass at .6 sec. This resulted in signals with a dominant

period of about 2 sec. A suite of records from about 15 events was released to us by LLNL and

bome of the records with the best signal to noise are dispiaved in Figure 9. The strong correlation

of ,he waveforms is apparent as is the move out of Pn in front of Pg with range. There are

differences between the Yucca Flat and Pahute Mesa signals at the same station, but this is not

surprising given the variation in distance to the test sites.

We developed and tested appropriate generalized ray and wavenumber integration codes for

computing synthetics of Pg which in this period range is sometimes called Pil. We examined a

number of plausible crustal models attempting to keep them as simple and realistic as possible

Our preferred structure model for the western U.S. was a crustal layer 32 km thick over a standard

lid model with a realistic free surface velocity decrease grading smoothly over the top 6 km. Green's

functions for the model computed using wavenumber integration and generalized ray theory are

compared on the left and right of Figure 10 respectively for a suite of ranges. The wavenumber

results are exact except for the limits of numerical integration while the generalized ray resu!ts

15
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are somewhat affected by truncation of the ray sum. The generalized rays include only those

which reflect from the free surface or the Moho thus neglecting internal reflections within the

surface gradient.

The utility of having reasonably accurate generalized ray synthetics is that they can be

decomposed into ray subsets to determine the paths carrying the dominant energy. Four subgroups

of rays are identified in the figure, and they are clearly related to the resonance phases discussed

above. The first energy is of course Pn, but the first large arrival or Pg onset is composed of PmP

and pPmP. The contribution of the free surface reflection is significant Fhe second group of

rays forming the second resonance is dornin3ted by 2PmP and 2pPmP. *rhe third group labeled

C. Gc refers to some unusual rays in a Converted Group. rhey are dominated by PFmSPmP,

PmPSmP and their free surface reflections. Note that this converted group moves rapidly out of

the synthetic window and that it evolkes a great deal of complexity in the wavenumber integration

synthetics. These mean that it will not strongly affect a discriminant focused on the onset of Pg

and that it is undesirably sensitive to the details of the free surface gradient. However, it may

constitute the desirable channel for scattered S energy discussed earlier. At any rate, the fourth

group noted in Figure 10 is a second head wave dominated by 2P,. This arrival is part of the

same generalized ray as 2PmP. so it is not surprising that if the reflection is strong so is the head

wave. The free surface reflection plays an important role in shaping 2Pn just as it does for 2PmP.

We computed similar synthetics for a crust model without the free surface gradient and found that

the effect of the gradient is to dramatically increase the significance of 2PmP and all of the free

surface reflections. Without the gradient, much moie upgoing eneigy converts to SV as should be

expected.

the next two figures present those records which we believe make a particularly strong case

for interpretation of the Pg observations in terms of the four basic generalized ray groups discussed

in the preious section (PmP, 2PmP, Converted Group and 2PJ). Figure II shows four records at

distances of about 200 or 300 km. Note in Figure 10 that this is where the generalized ray

interpretation is most valid. For each station, we show the observation on top, a complete

I II I I I I ý I I
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wavenumber integration synthetic and finally a generalized ray Green's function beneath to aid in

interpretation. The two records from MNV comprise a strong case that most of the Pg arrival is

comprised of an interfercnce of the PniP and 2PmP group. The relative amplitudes and exact

details differ between observation and prediction, but these are two second waves and this level

of fit is typical of that generally obtained in this period range. There is definite support for the

converted ray group, but its role in determining the waveshape is not as strong as for the other

two groups. The records at KNB and LAC provide further support that Pg in this distance range

is predominantly an interference of two main pulses The synthetics again do not predict the exact

ratio of PmP, 2PmP amplitudes, but they are reasonably close

Figure 12 presents a similar interpretation of four records at close to 400 km range. There

is continuing evidence of the importance of ProP and 2PmP in determining the Pg wave shape.

The converted group is outside the synthetic window The primary difterence is that the 2Pn

group has emerged in front of PmP and caused a clear pulse. It is important to note the inclusion

of the PinS, pPmS and pSmP head waxes within the 2Pn group. The reason is that the 2Pn wave

itself is a negative pulse as shown in the generalized ray Green's function. In all cases except for

the ELK record the first motion of the 2Pn group is clearly positive. The wavenumber synthetics

predict a weak positive arri,,al. We interpret the strong positive arrivals in the data as being

associated with the ProS group, though the observed arrivals are definitely sharper and higher

amplitude than predicted. Our model generally fails to predict head wave behavior in this regard

The fit of the observations to the ss nthetics after the onset of 2Pn is, on the other hand, most

acceptable and substantiates our model for the fine structure of Pnl.

The adequacy of tihe very Simpie crustal structuie, Model 3. for modeling the completIly

trapped (past critical angle) response though not the head waves in our data base is simple to

e:xplain. The model has no structure; no velocity inc;ease at all beneathi the crust-mantle transition.

The completely trapped energy has no penetration beneath the Pvhoho so it is insensitive to this

detail. I he head waves do penetrate, and in particular, would be sensitive to a positise gradient

below the transition. The Moho is a world-wide feature, ýo :l~at :n any regiun the developiient
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of the Pg through the PmP-21'mP interference could be anticipated, and because the energy iý

comnpletei) trapped, the waeotorm would be insensiti,.e to lateral \ariations in lid structure. This

has important implications in sohling the event discrimination problem.

Two of the most general l,.\sical bases with which to de\elop a discriminant between

explosions and earthquakes are the event depth and the level of' shear radiation. We have found

that the beginning of the Pg arrial is relatively deterministic and, because of the free surface

gradient, ielatively sensitive to the free surface phases. Because of the increased number ol

signi; .cant ra\ paths, the number of free ,urface contributions increases along ,%ith the conmplexiiv

of ; .. rtace contribution. Clearly the free surf-ace interaction is 'ery dependent on source

depth, i- is also sensitie to the leel of shear radiation and associated S to P conversion. A

clear path to follow in attempting to dev.elop a discriminant would be to focus anal~sis on the Pg

onset in the period range ve have been stud ,ing here. 1o establish the level of differenmes to be

expected between explosions and earthquakes, we computed Green's functions for a point double

coup!e bur:ed at 7 km depth in our od•c 3. The p :-"iccd -"iveforms for a iange ol 100 kill ale

compared to the synthetic for a shallo" explosion in Figure 13 The source for the earthquake

was assumed to be a triangle with I 4 sec rise and fall time. This is appropriate for a magnitude

5.b earthquake which is consistent with the event size used !n computing the explosion source

The e xplosion synthetic is ýhown on the top follow4ed by ss nthetics for a vertical strike slip. a

sertical dip slip and a 450 dip dlip fault. The differences in both the Pg and P, waetfoinls art

apfrare rnt

There are a sarietv of approahL'c. pssible in the developnment of a discriminant from the

ty pe ,.ti a el'orm il orrnaion show.n in the figure. In the ,:l'e of Pn. we used a simple correlatioll

norm as discussed in the pr-vtous vectIL.n. WLe de't eloa)ped a discrimiinant by simplv determining

the average oaveform expected for ar, expl.sion and correlatHig that waveformr with P.n v a.eforms

from a mixed data base. The exploiun-exploioii ntorms were on average about 10"o higher than

htie e\piosion-earthquake. The citrrel.m in n ilns to iLthe ci thquake ,avefornis with Ile e xplosion

waveform are shown next to the t .icet in Fig u re 13. The correlation of the xplosilon v. ith it-,ellI
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is of course 1.0, but it is reduced by at least 40% for each of the other Green's functions. From

a theoretical standpoint, discriminant performance comparable to the P, discriminant might be

anticipated. Waveform norms were computed for all possible source mechanisms by stepping

through fault orientation angles on a 10, grid. The average correlation decrease of the

explosion-earthquake was 45% with a minimum 28% For noisy signals in a laterally varying earth,

the performance of a correlation discriminant would undoubtedly be worse than these calculations

indicate, but additional inestigation seems warranted.

To complete this preliminary inquirY. into the potential ot the Pg waveform time domain

discriminant, we have computed on a theoretical basis the expected trajectory of the average norm

in a standard discrimination plot (see Figure 14). Fo compute tic \,ariation of a typical earthquake

source \ith size we combined relationships of seismic moment to ML and ml, (1 aylor et al., 1988)

with those for source duration with seismic moment for western North America (Somerville et al.,

1987) to obtain

Lowgduration) = 5.77mh - 2.778

This relation has the same information requirements as the Mueller-Murph, source which we are

using for our explosion calculations It onl), requires an mb -value in combination with a depth

scaling relation and a magnitude %ield cur,,e. Figure 14 shows the trajectory of the expected

correlation uf an explosion Pg waveform with an earthquake Pg waveform The observed P,,

correlations are shown for reference T'he separation of the observed explosion population from

the theoretical earthquake population i, far from complete. Hov4ever, there is cleUIrly sufficient

impetus to .ontinue the investigations •f the Pg discrinimant further and every reason to believe

the Pg Aaveform discriminant -ki!l be is good as any de\elloped to date. We again emphasize the

physica~ly based nature (depth phase") of the P n and Pg discriminants and the hope this offers for

,hem !o he widely transportable.
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UPPER MANTLE TRIPLICATIONS BENEATH ASIA

In.rnflit n Understanding the detailed structure of the seismic discontinuities of the Earth'.

upper mantle is of fundamental importance in the geosciences. This structure and its regional and

lateral variations play an important role in geodynamics as well as providing constraints for

compositional models of the Earth. The upper mantle P- wave velocity discontinuities have been

studied in detail for many different regions (e.g.. U.S., Canada, Europe, and west Asia) However,

until recently, data recorded in central Asia have not been readily available, preventing the Asian

plateau from being an area of prolific study.

In establishing the USA-USSR Joint Seismic Program, whereby an agreement between IRIS

and the Soviet Academy of Sciences has been set forth, previously unavailable data can now be

obtained. Decades of analog records from the Soviet national network are now available, and are

similar in many respects to the World Wide Seismographic Station Network (Given, Helmbergel

and Zhao, 1991.) Many records from this database are already digitized and easily obtained from

the Center fur Seibiiii-, Studies (CSS. 'These data greatly increase the number of event. to-station

paths in central Asia, as well as span a distance range bracketing the upper mantle triplications,

enablins a detailed regional study of the upper mantle beneath central Asia.

In an effort to study the upper mantle P-wave velocity profile we analyze P-wave motions

at distances where arrivals from the upper mantle triplications are clearly evident. The data used

are digitized analog vertical component short period records of USSR underground nuclear

explusions. A comparative approach is taken wherein USSR data are correlated with predictions

made from upper mantle models presented in previous studies. These models were derived for

distinctly different regions elsewhere %)n the globe, and are used here in an effort to gain a qualitative

understanding of the lateral variations in the upper mantle of the different locales of central Asia.

Repion of Stud- A map of the study area is presented in Figure 15. The eleven stations from

which we hae short period analog data arc presented as triangles. This arra, spans distances fromn

around 5 to 40 degrees, sampling iiian dil''rent regions, as wkell as dillerent tectonic settings.

While the lithosphere in central Asia is comprised of the Russian Platform to (he north-,est, and

2'3



USSR Study Area

NOVA YA ZEM 'A

PAM RI [

\I

TUP

SE'MTPA L4 7YNSK

CHU

Figure 15. Map of Asia. II stations and 3 source regions used. Raypath coverage is good,

adequately covmring central Asia.
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the West Siberian Platform to the north, the regions to the south and southeast are comprised of

complex fold systems. The question otf whether or not these fold systems are accompanied by

tectonic rather than shiela seismic velocities in the lithosphere is important, and will be investigated

in this study. Also, lying between the West Siberian Platform (plains) to the north and the Northeast

Siberian fold system (mountain ranges) to the east, is the Central Siberian Platform (plateau) to

the northeast, where the possibility of some degree of a tectonic lithosphere, or transition zone

betveen tectonic and shield regions, has nc,4 yet been addressed. Three stitions are located in the

southeast (BOD, T..Y and TUP) which permits us to investigate such a possible transition zotie.

With two distinctly different and densely populated source regions, Novaya Zemlya and

Semipalatinsk, there are many path geometries across Asia to investigate such lateral variations.

(.imparatire Modeling [echninue A compa. itive modeling approach was used in this study,

whereby data were correlated with predictions made from models previously presented in the

literature. The synthetics were generated by the generalized ray method (Helmberger, 1973a). The

generalized ray technique was used because of its speed and cost-effectiveness. The procedure

was to first generate Green's functions for the specific models and distances and then convolve

them Aith empirical sources to obtain the predictions. Empirical sources were estimated by taking

several P-wave waveforms at teleseismic distances where the triplication arrivals are well separated

in time, taking care to choose records with good signal to noise ratio as well as minimal P-wave

coda, keeping only the first arri'al for convolving with synthetics (see Figure 16). Records chosen

were tvpically beyond 26 degrees or so, a distance sufficiently past the 670 km discontinuity

triplication crossover. P-waves with different source time functions were chosen so that comparing

synthetics with the data could be easily accomplished by choosing the empirical sources having

source time function characteristics matching those of the data to be modeled.

Te lDat..•S•Sl, Gur data set is a collection of 47'9 digitized short period vertical component records

from II stations of the Soviet national network, recording 110 underground nuclear explosions.

The number of events recorded at eachi station is presented in Figure 17a. Some stations are very

densel- populated, whlle others are ,parse. The distance distribution oi the events recorded for
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this network is shown in Figure 17b. As this figure illustrates, the distances where the different

triplication arrivals are routinely recorded from around 15 to 27 degrees are well populated. Nearly

all of the 110 events are from the two main Soviet test sites, Semipalatinsk and Novaya Zemlya,

with the exception of several off site Peaceful Nuclear Explosions (PNE's.) The Novaya Zemlya

events are from the northern Matochkin site. The Semipalatinsk events are from 3 specific sites:

Degelen Mountain, Koynstan and Shagan River. The Semipalatinsk events are plotted in Figure

IS using the USGS PDE locations. The data from each of the three Semipalatinsk sites were anlzed

separately. The CKM-3 instruments recording these events are similar in nature to the World Wide

Seismographic Station Network (WWSSN) short period instruments, peaking at around I second.

This data set is easily obtained in digital form from CSS.

The controlled nature of the source-receiver geometries along with the abundance of the

short period data makes it ideal to stack the data. Records were binned with respect to source

regions and stations, and a separate stack was made for each station at each source site, provided

sufficient data existed for any given path. Separate stacks were made for the three specific

Semipalatinsk sites shown in Figure 18. Thus, for any given station, up to four stacks may have

been made: one for each of the Semipalatinsk sites, and one for the northern Novaya Zemlya site.

The data for specific paths contain similar waveforms, and after stacking, the triplication signals

become enhanced while coda signals decrease in amplitude. The distance window for any site-receiver

path usually varies no more than about 30 kin, so the stacks were made by lining up the first

arrivals of the waveforms. Al! amplitudes were normalized to Inity before stacking. An example

for the well populated station OBN is given in Figure 19. The distance window, using the USGS

PDE locations, spans only about 7 km. The resulting stacked traces of the short period data set

are used to model upper mantle structure. Records were stacked only for distances where triplication

arrivals are clearly seen above the noise level. Records were not included in a stack if they had

portions that were zero in amplitude presumably due to undigitizable sections of the originil
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Figure 18. Locadon of events from three Semipalatinsk sites. The locations are trom
the USGS PDE. The data from each site were stacked separately.
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Figure 19. Stacking Technique. For a specific source region and station, the first ar-
rivals are lined up, all amplitudes are normalized to the peak amplitude, then the traces
are summed. The example given, for station OBN recording Shagan River events, the
variation in distance spans about 10 km. The resulting sum exhibits enhanced triplica-
lion arrivals and suppressed coda arrivals.
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seismograms. The total number of records fitting the above criteria is 183. For the binning of

records chosen above, 20 stacks have been made, with the average number of records per stack

being about 9 (Table 1).

Mnndls for Comanararlve S9udy; Synthetic seismograms were generated for the distances in Table

I for four different models. These synthetics were then compared to the data stacks in an effort

to obtain a first order idea of the type ot model necessary to explain the data for each path. The

models chosen represent different t1oes of lithospheric structure (Figure 20), such as a thick shield

model (S25, LeFevre and Helmbeiger. 1990, Canadian shield), a model with no low velocity zone

(KCA. King and Calcagnile, 1976, west Russia), and two models with a low velocity zone in the

lithosphere, K8 (Given and ilelmberger, 1980, northwestern Eurasia) and T7 (Burdick and

Helmberger, 1978, western U.S.), %here T7 is a tectonic model. Although these four models were

derived for different regions of the globe, the comparison of their predictions to the Soviet data

is important to assess the possible nature of the underlying upper mantle. The most important

differences in these moidel5 are in the top 200 km. Second order differences are the depths of the

"400" and "670" km discontinuities, gradients above and below the discontinuities, as well as th,ý

percent velocity increase of the discontinuities. For the rest of this paper we loosely use the numbers

"400" and "670" to represent the two major upper mantle discontinuities, keeping in mind that their

-xact depth varies from model to model, as well as in the Earth.

Absolute Travel Time-.: The arrival times of the first arrivals of the large short period data set

were usually very easy to measure due to the first arrival's impulsive nature. Records having low

signal to noise ratio were not used in our travel time analysis. One of the uncertainties in the

travel times is the use of the USGS PDE origin times (unfortunately. the origin times are not

available from the USSR.) Also, the records came from CSS with a file of instrument time

corrections that range from 0 seconds up to around 60 seconds. Up to three time corrections per

day are listed for each station for the das that events occurred. In many cases, the clock error

was not constant over the period of a da., inJ changed by as much as a second and a half This



Table 1: Stacked Traces list

STACK STA DELTA # SOURCE SITE.
NO. NAME (deg) RECS REGION NAME

I ARII 13.43 3 SemiDalatinsk Degelen Mountain
2 ARU 13.75 4 Semipalatinsk Shagan River
3 TLY 15.72 14 Semipalatinsk 5hagan River
4 ARU 17.09 9 Novaya Zemlva Matochkin Shar
5 OBN 19.76 7 Novaya Zemlva Matochkin Shar
6 NRI 20.14 4 Semipalatinsk Koynstan
7 NVS 21.86 8 Novaya Zerniva Matochkin Shar
8 BOD 22.01 4 Semipalatinsk Shagan River
9 BOD 22.49 3 Semipalatinsk Degelen Mountain

10 NVS 22.87 4 W. Kazakh PNE
11 APA 2436 2 Semipalatinsk Degelen Mountain
12 APA 24.60 2 Semipalatinsk Shagan River
13 OBN 25.22 5 Semipalatinsk Koynstan
14 TUP 25.28 5 Semipalatinsk Shagan River
15 OBN 25.56 17 Semipalatinsk Degelen Mountain
16 OBN 25.96 39 Semipalatinsk Shagan River
17 BOD 27.44 9 Novaya Zemlya Matochkin Shar
18 UZH 28.31 5 Novaya Zemlya Matochkin Shar
19 TLY 29.88 5 Novaya Zemlva Matochkin Shar
20 UZH 36.20 31 Semipalatinsk Shagan River
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Figure 20. Ve!ocity Models. Four models were used in this study tor comp lp~i~olll wi
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may be another source of travel time error. For cases where the clock error changed within a day,

we interpolated the given time corrections for that day to the P-wave arrival time for that day's

event, assuming the clock error changed in a linear fashion

First arrival travel times are shown in Figure 21 with the predictions of model KCA.

Anomalies are clearly visible on this figure, especially at 15.7 degrees (station TLY) where the

first arrival is as delayed as the discontinuity reflection This may be a slow tectonic path from

the Semipalatinsk region.

With the uncertainty in travel times due to origin time, along with the data being grouped

at ,ery discrete distances as seen in Figure 21, a .. investigation is not possible. Furthermore,

because of these uncertainties, we choose not to use absolute travel times from this data set as a

discriminant for choosing between the different models.

\Vaieform Compariinn: As Figure 15 indicates, our study area has good coverage of the -entral

Asia area. However, the source-receiver geometry is such that no given path from a source region

has more than one station on it. Without a profile of stations for a specific path, obtaining a

unique solution model is not possible. While deriving a definitive model is not practical in this

situation, comparisons with model predictions can still be made to assess agreement A, ith different

classes of models and assess lateral variation from path to path.

Predictions for the four models KS, KCA, S25 and r7 are compared to the data stacks in

Figure 22. Nine panels are presented, in each of which the top trace is the data stack, and the

four underlying traces are model predictions. The time window shown is 30 sec, and the prominent

arrivals are a function of distance. An example of the relative timing order of the triplication

arrivals is seen in the travel time curve for KCA in Figure 2-I. Up to around 210 the first arri'al

is the direct P from above fUe 400 (PAB), and the second arrival is the combination of thz reflection

off the top of the 400 km discontinuity (PBc) and the P wave from below the 400 (PEc). In some

cases, the reflection off of the top of the 670 (PDE) along with the direct arrival from below the

670 (WPF) are evident as a third arrival. For these distances, the goodness of fit criteria are how

well wavefoims, amplitude ratios and differential travel times in the synthetics agree with the

!~~~ ~~ 3 7
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Figure 21. First Amval Travel Times. First arrival picks of the short period da(a
made from impulsive wavetorms only are shown here with the prediction of mnodel
KCA. The letters A through F represent the names of the different tripliction
branches.
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data. This distance window corresponds to Figure 22 (a) through (d). From right before the

crossover distance of the PAB and PCD, to a little after the crossover of the PCD and the arrival

from below the 670 (PEF), the differential time between the triplication arrivals is often too small

to measure. This corresponds to Figure 2 (e) through (h), where at least two arrivals appear as

more of a wave packet than distinct arrivals. The shape of these wave packets (data and synthetics)

are very sensitive to the amplit-auc ratios of the ditferent arrivals, and thus can be a good diagnostic

tool to distinguish between different possible models. Boyond the crossover distance ot' Pcj) and

PEF the arri,,als separate in time so that differential travel time information again supplements the

amplitude ratios.

The degree of fit of the model predictions to the data stacks varies from good to poor. In

some cases differential travel time information is well predicted, but amplitude behavior is not.

Also, the short period data is undoubtedly affected by site sti ucture reverberation, which we make

no effort to account for here other than attempting to suppress this affect in the stacking process.

Nonetheless, the triplication arrivals are usually strong and clear in this data set. Data from man,

of tne paths to the west of the test sites in Figure 15 are better modeled in the first order sense

b, a shield or shield-type model. Data to fLY to the east fromn Semipalatinsk, however, is Letter

modeled b., the tectonic western US model T7. Figure 22 (b) shows the data stack and predictions

tor station 'FLY at 15.7'. Only model T7 predicts the anomalously small differential travel time

between PAD and Pc'.[ due to its slow lid. TI a slightly more northerly azimuth is station BOD.

Figure"" has two central Asian stacks for BOD. With about a 0.5 degree difference in distance,

Figure 72 (g) is for the Shagan River site, while Figure 22 (hi is for the Icgelen Mountain site.

For figure 22 (g), the prediction from K8 is the best. Increasing in distance 0.5* (Figure 22 (h))

yields a1 !e-C,,it that ;s poorly modeled by all four models. It is possible that the path to 3OD from

Semipalatinsk may coincide with I transit;on region or boundary between the tectonic region to

the south and a more shield-like lilthuphere to the north, producing complex records.



Station OBIN recorded many events from the three Semirpalatirisk sites. The three resulting

©BIN data stacks and model predictions are presented in Figure 23. For this distance, the first

arrival is PEF and the second arrival is a combination of PCP and PDE_, Around 8 or I0 sec after

the first arrival, thL back branch of the 400 triplication consisting of PAB and PBC can be seen in

the synthetics. A remarkable feature in the data in Figure 23 is the rapid diminishing with distance

of the second arrival (PcD and PDE..) This feature is not predicted in the synthetics. Given and

1-lelmberger (1980) presented data in this same distance window, from Semipalatinsk to an azimuth

to the southwest recorded at TAB (Tabriz, Iran.) For that azimL'!h, the changing amplitude ratio,

or' the first two arrivals is well predicted by 1K8 (Figure 24) ihe OBN data appears anomalous in

that the second arrival decays so rapidly in such a small distance window of around 0.8". 1Ihis .

feature of diminishing PeP and PDE relative to Pn.:P in a small distance window (i.e., move the tip

ot the triplication to a smaller distance) may be more accurately modeled by increasing the velocity

gradient between the 400 and 670 discontinuities, lncreasing the gradient causes down-going rays .

in this depth range to turn up more sharply. Thus the deepest possible ray propagating above the

6".0 discontinuity, i.e., the arrival at the tip of the D branch, is bent up to a smaller distance.

Station TUP has an azimuth from Semipalatinsk intermediate to that of stations TLY and

hOD for that same source region. For this path, the distance to TUP is 25.28*. This distance is

in the window of that presented in Figure 23 to station OBN, though the waveforms are quite

different. The source time function of the TUP record is longer period, which may partly obscure

any differentiation between the two triplication phases that are arriving just a few seconds apart.

Also. if" these waves propagate along a transition zone from a tectonic lithosphere to that of a

shield, complexities should be expected. Figure 25 (a) displays the stack for TUP and the synthetics.

-lhe prediction from model K8 gives the closest fit, though it is still poor. The prediction from

the tectonic model T7 is not as good as that of K8. It is possible that the transition from tectonic

to) shield is abrupt because the F7~ model is the only model that :mdequatcly predicts the record f rom

the~ neighboring path to the south at station ILY (Figure 22 (b)). For paths to TLY, TUP and DOD

from Semipalatinsk, the models K8 and T7 produce motions closest to our observations. This

t I II I II I1
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Semipalatinsk to Tabriz, Iran

Short Period
Observations Synthetics

25.30 ~ ~ A'
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""0 sec SourceAI

Figure 24. Three Semipalatinsk events recorded at TAB (Tabriz, Iran) are shown here
with K8 synthetics (from Given and H1-elmberger, 1980.) The amplitude ratio of the
first two arrivals is well predicted by K8 for this southwest azimuth from Semipala-
tinsk.
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Figure 25. (a) through (c) present data stacks (top trace) and the predictions of the four

models (bottom four traces.) Comparisons are described in the text.
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implies that over a lateral distance of around 500 km or so, the low velocity zone might drastically

change from one like that in T7 to one like that in K8. Finer modeling with broadband data is

necessary to resolve such issues.

For larger distances (Figure 25 (b) and (c)) the predictions widely vary for the four modEls

presented here. The observed amplitude ratio of the first two arrivals in each of (b) and (c) is

not predicted by the synthetics. Also, models KCA and S25 predict a large late arrival that :,as

reflected off of the 400 km discontinuity. This is not seen in the data. If the ;arge second arrival

in the data is PCD with PDE, then S25 does better than the other models in predicting the differential

travel time, though the amplitude ratio prediction is very poor. Modifications in the fine details

of the gradients above and below the discontinuities are necessary to model these two paths.

D •isusinn The four models chosen for this comparative study represent widely varying upper

nmantle rheologies. All four models were derived from body wave studies. KCA is a logical choice

as a comparison model because it was derived from short period data in the western Russia region.

K.8 was chosen because it has a shield-like lithosphere as well as being derived for parts of central

Asia that coincide with out study area. K8 was constructed using KCA as a starting model,

utilizing both short and long period data from Soviet explosions. A classic shield model is S25,

derived for the Canadian shield region using long period earthquake data. A first order justification

in choosing S25, a model that was derived for a completely different locale, is that central Asia is

thought to be shield-like, with the East European Craton to the west and the Siberian Craton to

the east. This choice has proven useful, as S25 is a best-fitting model for several of the paths in

our study area. To assess regions where tectonics are thought to play an important role, model

T7 was utilized. T7 was derived for the tectonic western US fro n long period body waves of

earthquakes and explosions. Other models in the literature may have done equally well for our

criteria of choosing four models with fundamentally differing lithospheres. We note again that

our choice of models is to emphasize regional and lateral variations in the upper mantle beneath

Asia, and not to make an argument for specific models for the specific locales.

• 15



We have not used absolute travel time information in our modeling procedure. Due to

uncertainties in hypocenter information, we are unable to analyze travel times at well populated

zations with array data techniques. However, we can still make qualita!ie comparisons between

the different stationb. For example, data recorded at TLY from Semipalatinsk are anomalously slo"

by up to 8 seconds when compared to KCA predictions (Figure 21, 15.7°). Absolute travel times

for the direct P waves at this range for the various models show considerable differences. The

largest difference is between S25 (pure shield) and GCA (pure tectonic, Waick (1984)) is roughl,

13 seconds. The travel time for GCA at 15.7' is over 10 seconds slower than that of KCA, which

brackets the TLY times in Figure 7. T7 predicts an arrival time near 3 seconds earlier than the

TLY data, though modifications in the direction of a more tectonic model makes matching these

observations possible.

rhe 13 source-receiver paths that are most relevant to upper mantle triplication distances

are presented in Figure 26 along with the best-fitting model for that path. For some paths, two

models are listed because predictions from either model may be considered as a better fit than the

others. The model name is in parentheses if the best-fitting model for that path poorly predicts

observed motions. If no model came close to predicting observations, a question mark is shown.

A comparative study has been presented in this report, so that the four models in Figure 26 are

primaril% meant to give a first order view of the upper mantle regimes beneath Asia, as well as

possible lateral variations from locale to locale. All of the models used in this study have a L VZ,

with the exception of KCA. Only one path favored KCA (station OBN from Novaya Zemlya),

with predictions from S25 being equally satisfactory. A first order qualitative conclusion from this

comparative approach is that from the four models chosen for comparison in this study, the north

and the west regions of our study aiea favor shield (S25) or shield-type (K8) models, while the

area to the southeast is probablk a transition zone from a shield-type mantle to a more tectonic

upper mantle (T7). A more detailed modeling approach is necessar. for each path to make more

quantitatie inferences about the structure uf the urnderlying mantle.

I I ! I I I I I I I I'



Paths and best fitt ing models
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Figure 26. Best fitting models for this data set are written on the wave-paths. If the
best fitting model or models do a poor job at best in predicting observations, the model
name is put in parentheses.
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Several paths in this data set produce motions that are poorly predicted by the above models.

For example, the paths from Semipalatinsk westward to stations ARU and OBN are close in azimuth

and are poorly modeled. For ARU, the ditferential travel time and amplitude ratio of PAB and

PCD in the data are not predicted in any of the synthetics (Figure 22a). For OBN. rapid decay of

the second arrival in a very short distance window is seen in the data and not the synthetics (Figure

23).

In the ca.se of station OBN, the diminishing second arrival at 25.96' can be attributed to an

early ending of the -D" tip of the 670 km triplication. To produce such a feature in the synthetics,

changes must be made to the model in the transition zone. Model changes made far above the 400

km discontinuity tend not to diminish the amplitude of the second arrival enough to match the

data. Support for this statement is seen in Figure 23 in that four very different lit•hospheric

structures fail to produce a diminished second ariival One way to end the 670 km triplication at

a smaller distance would be to include a small zone of an increased velocity gradient on the top

side of the 670 discontinuity. This turns rats up more sharply, thus decreasing the distance where

the -!" :ip occurs An example of such a scenario is presented in Figure 27. The left column of

synthetics is from K8, whereas the middle column is from K8.1, where K8 has been modified by

a small zone of increased gradient right above the 670 discontinuity. The prediction of K8.1 at

26.0' adequately suppresses the second arrival. It has been recently proposed that the depth of the

670 km discontinuity may xarv bh, as ouch ,, 20 km. Note also that the depth of this discontinuity

for different regions of the globe has been placed anywlhere from around 640 km to 690 km in

the literature A 670 km discontinuit, occurring at a more shallow depth would also give rise to

the "D" tip of the triplicatiun ending suuner. An example of the discontinuity raised by 17 km

along v. ith a 5lightlv increased overly:ing gradient is presented in the third column of Figure '7.

This model K8.2 also predicts the ci)rrec.t amplitude behaior at 26.00. These types of foiward

modeling calculations can be carried out at each station. Although we note here that the

non-uniqueness due to the source-rceiýer geometry prevents the validation of such results.
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Recently, there has been rene'ked debate over the existence ef a 520 km discontinuity.

Synthetics were made for a model D25 iJones and Heimberger, 1991), a fr )del where S25 was

modified by adding a I percent velocity increase at 500 km depth, and to preserve travel time

the increase in velocity at 670 km kaS .1ecreasp'd. In comparing D25 wynihettcs ,ith the data, a

discontinuity of this nature is not supported by the short period data stacks in this study.

With broadband data from the Soviet Union becoming more available, future work lor this

region will include a detailed forward modeling effort. By using other stations in the Soviet national

net',ork that were not included in the CSS data set, along with selected earthquakes, a better View

of the Asian upper mantle may be constructed. For the source - receiver geometry inherent in this

data set, wave paths are t pically isolated such that no multi-station profiles exist for any path.

For this reason we have not explored solution models for any of the data due to non-uniqueness.



COMPOSITION OF REGIONAL Pn and Sn WVEFORMS RECORDED

IN THE U.S. and Ij.S.S.R

1ntroction: With the methodologies available to compute high-frequency full-wave responses

both for vertically and laterally inhomogeneous crustal media, the broadband modeling of regional

displacement seismograms has become a topic in many recent studies for retrieving the source and

propagation path characteristics (Barker, 1991M Burdick et al.. 1991 Helmberger et al.. 1991, Zhao

and Helmberger, 1991). The method of Cagniard de-Hoop is generally used to understand the

composition of various seismic phases that the source process and the propagation effect together

make up at a receiving station. This method requires maný generalized rays to be tracked between

the source and the receiver As the crustal medium becomes complicated, the method can quickly

l'ecome quite cumbersome with the process of just tracking the rays. For this reason alone, the

method developed based on the frequenc\-,aavenumber integrationireflectivity approaches is highly

useful. This later method is computation intensive, but with the advent of fast computers and

v.ectorized machines this is no longer a constraint on the methodology.

At high frequencies the effects of scattering in the crust become so intense that only statistical

properties of wave forms -are meaningful. However, one exception to this generality involves the

long-period Pn and shear-coupled P waves at regional (1°-150) ranges (Helmberger, 197., 19'3).

In a recent study, Saikia and Burdick (1990) showed that the short-period Phi waves (period as

short as 2 s) are also stable. They studied many observations from the Nevada Test Site (NTS)

explosions recorded at regional distances of 200 to 420 km and modeled the Pni waveforms using

a deterministic crustal waveguide. The sources of these waveforms were shallow. Also, the sources

were predominantly isotropic, and the portion of Pnl waves which was included in the Pn and Pg

waves had a duration of about 30 s and was dominated by compressional waves. To understand

the observed data, Saikia and Burdick (1990) employed the following strategy. They used the

frequency-wavenumber algorithm (CODE: FILONAS, written by Chandan K. Saikia,

Woodward-Clyde Consultants) to compute the explosion generated Pn1 waves for several canonical

crustal models and selected a crustal model based on the agreement between the data and the



synthetic seismograms. The crustal model was then utilized to understand the composition of the

Pg wave group which was constituted of phases like PrnP, pPmP, 2PmP, ProS, pPmS, PmPSmP,

PmSPmP etc. P. is a constituent wave group whose frequency content is widely used to discriminate

events. In this study. we have taken a similar strategy to investigate the broadband composition

of P,, and Srd seismograms recorded in the North American continent at legional distance from

double-couple sources and of the P and S waveforms that are recorded within the Soviet Union.

We shall mainly focus on identifs ing the rays important to model the regional waves within the S

wave window.

Dat• For the U.S. study, we used a set of three-componeni broadband seismograms recorded at

Harvard (HRV) station at a distance of 640 km from the Saglienay earthquake of November 25,

1988 iFigure 28a). These seismograms were recoroud on a Streckeisen seismometer. We selected

these seismograms because many features recorded on the seismograms were successfully modeled

by Zhao and Helmberger (1991). Beginning with their crustal model, we have directed our study

towards ime modeling the high-frequency details observed in the P1 j waves and the composition

of waves identified as S. and sS, by Zhao and Helmberget (1991) using a multiple source model

A similar study was directed towards the modeling of tne broadband seismograms recorded within

the S..)et Union. We selected a set of three-component seismograms recorded at GARM from an

earthquake which originated at a distance of 200 kmn at an azimuth of 2901 on May 4, 1989 (38.7- ,°N

and "• 5-'W, Figure 28b). Unlike for North American earthquakes, the wavefornis of ver% few

Soviet Union earthquakes have been modeled. thus, it is necessary to develop a starting crustal

model even to obtain a first-order agreement between data and synthetic.

dInJfALni -J HRV Se!n.u).ealj.:jYrn the Soguenai I iLtlioua.l Figure 29 shows the hruadt,aild

d•spla,eements recorded at Harard ';tatjon. To irmv(',tmg:te the influence of ,-custal structure on thc

various sigiificant phases of the Pj window, we have started with the crustal model shown in

Figure 10 L. ,Jutted Ii nes. Ihis niodel extends ft m the ,,urface to a half space at a derlth of 55

krn. 1he n:,icr velocit, dicontinuiliv is :it a depth of 35 I)-m where the 11 velocity irumps t fonm

I k-kin s tO Yi k .m s j.nd the S ,.elo)mt, juMrp' I .)in 3 1. kinm , to 4 " m,*sin., /.hlmu j .Id IlI c III.'] Iicj'I
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Broadband Displacement recorded at Harvard

Station from 1988-11-25, Saguenoy Earthquake
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Figuie.29. Broadband three-comlonent displacement seis.mogranim as recorded by 1larvaid station

from 1988. November 25 Sagtiena. earthqpuake. The original seismogramn, were intcgrated
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(1991) used a reflectivity code (Mallick and Frazer, 1988) to compute the medium response and

used an elastic crustal structure to mnodel the data. They used a Q, tshear--wave quality factor) of

6200 and stated that a lower value of Q,, is not required to match the recorded wave form, although

the conventional wisdom is that for eastern North America Q, is of the order of 300 (Hwang and

Mitchell, 1987). Based on this published information, we started to look for certain phases within

the Pnl regime for which the agreement between the data and synthetic can be improved and in

the process to learn more about the iegional waveguide.

The phases marked as Sn and sS, show the greatest misfit between the data and the synthetics

computed by Zhao and Helmberger (1991) (see their Figure 16). The synthetic seismograms are

definitelý of lower frequency. So our initial attempt was to understand what part of the crustal

waveguide would be most critical in development of' these waveforms. In the present calculation,

we used the frequency-wavenumbet integration method and set the nyquist frequency at 10 hz.

We computed theoretical seismograms for eight fundamental faults and used a focal mechanism

with a dip 650, a rake of 78c and a strike of 3230 to predict the vertical, radial and tangential

component seismograms. These synthetics were used to compute both the point and multiple source

seismograms and the corresponding verrical component seismograms are shown in Figure 31. The

source model contained three sub-sources, with seismic moments of 1.55x10 2 4, l.45x10-24 and

1.95x 1024 d,,ne-cmn respectively. The second source was delayed by 0.65 s and the third source

by 1.45 s from the first source to account for the propagation of the rupture front. The first

source wa represented with a source time function defined by a trapezoid of 0.4s rise time. 0 05,

of fo!low-on time and 0.25s of healing time. Similarly, the second and third sources were convolved

with the trapezoids of (0.2s, 0.15s, 0.15s) and (0.1s, 0.3s, 0.2s), respectivel\. We also show the

svnthetic seismograms generated by Zhao and Ilelmberger ( 1991 ) in Figure 32 using a nyquist

frequency of 4 hz so that a direct comparison can be made with those show n in Figure 31. lhe

frequency content in tile Pnil waves uf these s,._ismogranis is not as rich as those Pnl wkaves shown

in Figure .31 In these seismograms (0 •gute 31), tih high Irequencies are the result of derived

source cotnplexity

• ¶3! U



Point-Source Vs Multiple-Source Synthesis of the

Harvard Record for Vorious Crustol Models

Point-Source
Modeling

Zhoo and HeImberger

(1991. Ceo. J.. 301-312)

UJpdated Crust Model
of Present Study

Multiple-Source

Modeling

7hoo and HeImberger

(1991. Geo J. 301-312:)
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___________________Updated Crust Model
of Present Study
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Figure 31. Comparison between two sets of displacement seisnograms synthesized usin point and
multiple sources. (a) Point-source displacements - the upPrtr seismogram is computed using the
modei response of Zhao and ielnmberger (1991) and the botto., seismogram is computed using the
model response of the present crustal model, and (h) multiple -source displaceien(ý for the ("o
crustal models.
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Figure 32. Comparison between data and synthetic displacements with a nyquist of 4 h2. The
seismograms for 625 kin was computed using 3 different velocity crustal model (Figure taken from
Z-hao and \elbrger, i991)



In Figure 33, we compare the vertical and radial component showing just the Pnl portion of

the seismograms computed using the parameters of multiple sources. The high-frequency signals

are adequately predicted with respect to those observed on the recorded data. The seismograms

computed using the response up to 4 Hz were essentially identical to these seismograms.

R1a_ Analysis of Pni Seismograms. In this section, we discuss our investigation of the constituent

phases of the recorded Pni seismogram at Harvard station. The basic idea is to investigate the

interaction of individual ray groups in creating the total seismogram. We computed generalized

ray seismograms using the source process of the Saguenay earthquake for several groups of generalized

rays. In Figure 34, we display vertical-component seismograms of these ray groups. The top six

saismograms are normalized to their maximum amplitude. All the PmP and SmS rays were allowed

to reflect from each interface beneath the crust-mantle boundary including the reflection from

the Moho discontinuity. The total response of these PmP and SinS rays is plotted in the first

seismogram. The geometric arrivals are indicated by PmP and SmS respectively. The Sr arrival

is small and is preceded by a refracted phase SP. This refracted phase had developed due to a

critical incidence of an S wave on an interface periatting the converted P phase to travel along

the interface. This is a strong phase as distinctly observed on the record (see Figure 33) and was

incorrectly identified by Zhao and HelImberger (1991) as the Sn wave. The seismogram in the

second row is for the sPmP, a ray which has departed from the source as a S wave and then

converted to P mode at the free surface. The amplitude of this ray is small. The next seismogram

is for sSmS. Both the geometric and head waves are strong for this ray group and contribute

significantly to the total seismogram. The next two seismograms are for the SmSSmS and sSmSSmS

ray groups. Both the ray groups have significant contributions. The sixth seismogram is for a ray

group identified as SInS'SinS. The rays included in this group leave the source downward and

reflect from each interface. The reflections are turned back into the lower crust again at the Moho

discontinuity before they are reflected back to the receiver. The contributions from these rays do

offer a significant contribution to the evolution of the Sn wa,,, group. The seismogram "Total" is

the result of direct sum of the upper six seismograms. Having obtained a good agreement between

5 9



Comparison between Data ono Multiple-Source Synthetics
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Generalized Ray Interpretation of Pnl Waves at Regional

Distance - R=640.0 Km (Saguenay Epicenter to HARVARD)
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Figure 34. Understanding of the waveform recorded at liarvara station us!ng the ray decomposirion
technique. 'The top six seismograms are for the individual ray groups. The seismogram labelled
"Total" is the total response of all the responses of upper six ý( ismograms and the comparison with
the F-K seismogram shown below suggests a good agreement between the two seismograms.
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the data and the synthetics, we only plotted the multiple-source frequency wavenumber seismogram

computed using the frequency-wavenumber method beneath the total response for a direct

comparison. This comparison produced good agreement among the dominant features within the

so called "Sn waves".

Thus, we have extended our previous study (Saikia and Burdick, 1990) on the deciphering

of the ray composition of Pg waves from explosion sources to earthquake sources. As in the above

study, we found that the waveforms within the Sn group can je studied in time domain in terms

of a basic few rays, namely the SINS, sSmS, SmSSmS, sSmSSmS and SmS'SmS rays. Since these

phases leave the source as S waves, they are not excited by the explosion source. Therefore, the

only phases that may arrive within the Sn widow from a pure isotropic source are the P waves that

are converted to S waves.

.lodelin Ltf GARM Seismograms from May 4.,989 USSR Earthap..k: In this study we have

used a set of three-component seismograms recorded at Garm station from an earthquake of May

4, 1989 (latitude: 39 4360N and longitude: 75.350E, h=35 km, ISC). The station is located at a

distance of 200 km from the source Figure 35 shows the recorded displacement., processed :'rom

the broadband velocity seismograms. A high-pass filter was applied to remove the long-period

effects. The crustal structure encountered by the wavefield along its propagation path is complex

which is reflected in the waveform. To begin to understand the waveforms, it was necessar. to

develop a crustal structure.

Our strategy for developing the crustal model was to begin with the tangential component

seismoggam because of the simplicit\ of the observed displacement. This component contains only

three distinct individual arrivals as marked by the arrows. We used generalized ray theory to

synthesize this component for various crustai models and several source depths. The best prediction

was obtained for a source depth of 25 km for the prelimmnar, crustal model shown in Figure 36.

'Ae used the following fucal mechanisnn dip=-750, slip=- 135, and a strike=320. The structure

contain% two major discontinuities rep'c entini; the Conrad and the Nloho. We succeeded in modeling

the tangential displacement using onlp three arrivals, the direct SHI and two reflections from the



Broodband Displacement recorded at GARM Station
from 1989-05-04 Earthquake in Soviet Union; AZ-292
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Figure 35. Broadband three-component displacement seis5in-oirU s as recorded by Garm station
from the USSR earthquake of May 4, 1989. The original scismograms were integrated.
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USSR Regional Velocity Model
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discontinuities. The frequency-wavenumber seismograms were computed with these parameters

and were compared with the recorded data. Figure 37 shows the comparison between the data and

the synthetic seismograms for the vertical and tangential components. We are successful in producing

a good igreement between the d.ata and the synthetic for the tangential motion. We mar: the

ina.viduai arrivals in the synthetic and show their correspondence with the data by the thin arrows.

I he vertical component show agreement in the arrivals of Pn. PmP, ScS and SmS phases. The

signal bracketed within the window of he ,-ertical-component ,ynthetic seismogram has a similar

character in the frequency content to the signal bracketed within the data window. Figure 38

shows -i generalized ra,, seismogram using the thiee rays. The vertical synthetic seismogram has

:t ;rong SinS which is smeared out in the data due to the interaction \, ith the phss,.'ally more

•.mplicated crust in the region. The ,ertical component of the recorded seismogram is also

dominated bý long-period Pnl signals sho\4n by the solid A induw. These waves are also obs-,r'.ed

in the synthetic seismogram but arriving at Garm with a fast veiocity. We also investigated the

effect of a possible linear velocity gradient near the free surface to determine if sucrn velocity

distribution would account for the mismatch between the data and the synthetics with,, ,\.cketed

the window show~n in Figure 37 We discretized the top ten kilomeLers of the crust into ten lasers

uf equal thickio . nd allowed a P-wave ;elocit, increase from 4.5 km./sec to 5.5 kmsec from

the surface. The S-wave veloC.ity within each layer had a ratio of 1.73 to the P-wave velocity.

This seemed to be a particularly reasonable expianation tor the small complex phases between the

major arrivals. However, the synthetic seismog3rams computed using this surface gradiert did not

improve the fit to a significant degree.

S1 ImrlesIIIf Re.ion•• l Pil \Wa% ves I r"_ the L md L..Ji Kr'jji ie: In this 'ection, we

continue to investigate the regional wavelomis th'it are lilely to be predicted by the crustal models

developed for North America and Soviet U n on. Since the record at Harvard station was so

,uccessfully modelled and since it was it a anige of ý,0 kinm. we examined the response of the

I.USR crust model at this range. In I ict, sevmnograins at ,uchi d ,.:anrcc are just be.oming ava ilable

'lte Soviet UiMion. Figure 39 shows the coinpar,oim betwen the synthetic seismnugrants
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Figure 38 A vertical component seismogram computed usig direct f" and S, PcP and )cS. and
PlmP and SinS phases. 1 hese ari.als can distinctly be obser% ?d on the recorded seismoir.ms.
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Comparison of Displacement Seismograms at 640 Km

for the U.S. and USSR Crustal Models

USSR - MODEL

US - MODJEL

S.. . €- y •USSR

R

I I

0.00 21.00 42.00 63.00 8".00 105.00

Time in Seconds

Figure 39. Comparison hetw,,c-cn the synthetic seisnmograms comput,-d a3 640 km for the LISSR

,riu. I;:lmo.iJ.l mrid the US crustal model [loth vertical and ridial components are shown.



computed for the USSR and US crustal models for both the verti ents assuming

the same focal mechanism at the same azimuth. The seismograms at the respective

depths of the earthquakes and the two depths are similar. We also used the same source function.

The USSR crustal model predicts a stronger PmP relative to the Pn. The Sn/SP and sSn arrivals

predicted in the seismograms by the US crustal model (marked by the arrows) seem to exhibit a

correspondence to the long-period signals predicted in the response of the USSR crustal model.

The difference in the amplitude ratios is caused by the differences in the near-surface velocities

of the two crustal models. For the North American crustal model, the crustal velocities have a

gradient near the surface. The rays arrive at the receiver more steeply compared to the rays for

the USSR crustal model, thus partitioning the energy in a significantly different ratio to the vertical

and radial component.

We further investigated the composition of the Pai wa\,es predicted by the USSR crustal

model at 640 km in terms of generalized rays. We found that the S-wave reflections from the

..Muhu and Conrad discontinuities are strong as shown in the top two seismograms of Figure 40.

The Conrad reflection, ScS, arrives immediately following the Moho reflection SinS. I"he phase

shown by an arrow on the SInS seismogram is arriving at the arrival time of S, phase, but its

waveshape is more complicated than is expected from a classical S, phase. Among the other

phases that contribute most significantly to the total PnI seismogram within the S window are the

sSmS, SmSSmS and ScSScS phases. The bottom two seismograms plotted in Figure 40 allow us to

compare the agreement between the generalized ray (Total) and frequency wavenumber (F-K)

seismograms. The agreement is poor following the PmP arrival. A strong long-period signal does

propagate to the receiver in the frequency wavenumber scisinogram. This must be a total effect

of many generalized rays. This effect was also observed on the recorded seismogram at Garm

station even at a distance of 200 km froi,, the source.

Conclusions: Based on these investigations, it seems feasible to develop time-domain discriminants

at different nuclear test sites which rely on the stable features that are observed in the recorded

waveforms. T[he most stable phases ate observed in the exploson generated P,, waveforms for
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Generalized Ray Interpretation of Pnl Waves at Regional

Distance - R=640.0 Km - SOVIET UNION CRUSTAL MODEL
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Figure J0. Understanding of the waveform computed at 640 Km from the USSR crustal model
using ,ne ray decompoition technique. The top six seismograms are for the individual ray groups
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periods as short as 2 s (Burdick et al.. 1988; Saikia and Burdick, 1990). In this stud%, we have

extended our analysis approach to regional broadband seismograms from earthquake sources. The

short-period Pr1 waves have a functional dependence on the crustal waveguide. They can be

deterministically modeled using average flat-layered crustal structures and using some selected

generalized rays. By modeling the broadband displacement at Harvard station, we found that the

structure across the crust-mantle transition zone and within the mantle can profoundly affect the

frequency content of the phases like Sn and sS,. The source multiplicity of an earthquake can also

create added complexity in the frequency content of these phases We found that the Phi seismograms

near the S-wave arrival can adequately be modeled using the ray responses of the follov, ng phases:

SinS, sSmS, SmSSmS, sSmSSmS and SmS'SmS.

For the Soviet Union, the most important requirement for understanding recorded seismograms

is the crustal model. The structure within the Soviet Union is heterogeneous and the development

of reliable crustal models is on-going tGurrola and Minster. 1991). In this studý, we hae developed

a crustal structure by modeling the recorded seismograms at Garm station from an earthquake at

a distance of 200 km (Az=2920) which consisted of Conrad and Moho discontinuities. In addition,

a slight gradient is allowed for the uppei -mantle structure. The ray analysis indicated that the

most important generalized rays for the composition of the Pnr waves are the following phases:

SinS, ScS, sSmS, sScS, SmSSmS and sSmSSmS.
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