1,103 research outputs found

    Mathematical modeling of gonadotropin-releasing hormone signaling.

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control of reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.This work was funded Project Grants from MRC (93447) and the BBSRC (J014699). KTA and MV gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1 and an MRC Biomedical Informatics Fellowship (MR/K021826/1), respectively

    Gonadotropin-releasing hormone signaling: An information theoretic approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Gonadotropin-releasing hormone (GnRH) is a peptide hormone that mediates central control of reproduction, acting via G-protein coupled receptors that are primarily Gq coupled and mediate GnRH effects on the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. A great deal is known about the GnRH receptor signaling network but GnRH is secreted in short pulses and much less is known about how gonadotropes decode this pulsatile signal. Similarly, single cell measures reveal considerable cell-cell heterogeneity in responses to GnRH but the impact of this variability on signaling is largely unknown. Ordinary differential equation-based mathematical models have been used to explore the decoding of pulse dynamics and information theory-derived statistical measures are increasingly used to address the influence of cell-cell variability on the amount of information transferred by signaling pathways. Here, we describe both approaches for GnRH signaling, with emphasis on novel insights gained from the information theoretic approach and on the fundamental question of why GnRH is secreted in pulses.This work was funded Project Grants from MRC (93447) and the BBSRC (J014699). KTA and MV gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1 and an MRC Biomedical Informatics Fellowship (MR/K021826/1), respectively

    Information Transfer via Gonadotropin-Releasing Hormone Receptors to ERK and NFAT: Sensing GnRH and Sensing Dynamics

    Get PDF
    This is the final version of the article. Available from Oxford University Press via the DOI in this record.Information theoretic approaches can be used to quantify information transfer via cell signaling networks. In this study, we do so for gonadotropin-releasing hormone (GnRH) activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells (NFAT) in large numbers of individual fixed LβT2 and HeLa cells. Information transfer, measured by mutual information between GnRH and ERK or NFAT, was <1 bit (despite 3-bit system inputs). It was increased by sensing both ERK and NFAT, but the increase was <50%. In live cells, information transfer via GnRH receptors to NFAT was also <1 bit and was increased by consideration of response trajectory, but the increase was <10%. GnRH secretion is pulsatile, so we explored information gained by sensing a second pulse, developing a model of GnRH signaling to NFAT with variability introduced by allowing effectors to fluctuate. Simulations revealed that when cell–cell variability reflects rapidly fluctuating effector levels, additional information is gained by sensing two GnRH pulses, but where it is due to slowly fluctuating effectors, responses in one pulse are predictive of those in another, so little information is gained from sensing both. Wet laboratory experiments revealed that the latter scenario holds true for GnRH signaling; within the timescale of our experiments (1 to 2 hours), cell–cell variability in the NFAT pathway remains relatively constant, so trajectories are reproducible from pulse to pulse. Accordingly, joint sensing, sensing of response trajectories, and sensing of repeated pulses can all increase information transfer via GnRH receptors, but in each case the increase is small.This work was supported by Biochemical and Biophysical Science Research Council Grant BBSRC BB/J014699/1 (to C.A.M. and K.T.-A.). M.V. acknowledges the support of the Medical Research Council (a strategic skills development fellowship in biomedical informatics) and the Engineering and Physical Sciences Research Council via Grant EP/N014391/1

    Information Transfer in Gonadotropin-releasing Hormone (GnRH) Signaling: extracellular signal-regulated kinase (ERK)-mediated feedback loops control hormone sensing

    Get PDF
    The computation model used in the study of GnRH signalling which was used to generate the data appearing in this paper is in ORE at http://hdl.handle.net/10871/27844Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.This work was supported by a Biochemical and Biophysical Science Research Council award (BBSRC BB/J014699/1; to C. A. M. and K. T.-A.)

    Using GIS to create synthetic disease outbreaks

    Get PDF
    BACKGROUND: The ability to detect disease outbreaks in their early stages is a key component of efficient disease control and prevention. With the increased availability of electronic health-care data and spatio-temporal analysis techniques, there is great potential to develop algorithms to enable more effective disease surveillance. However, to ensure that the algorithms are effective they need to be evaluated. The objective of this research was to develop a transparent user-friendly method to simulate spatial-temporal disease outbreak data for outbreak detection algorithm evaluation. A state-transition model which simulates disease outbreaks in daily time steps using specified disease-specific parameters was developed to model the spread of infectious diseases transmitted by person-to-person contact. The software was developed using the MapBasic programming language for the MapInfo Professional geographic information system environment. RESULTS: The simulation model developed is a generalised and flexible model which utilises the underlying distribution of the population and incorporates patterns of disease spread that can be customised to represent a range of infectious diseases and geographic locations. This model provides a means to explore the ability of outbreak detection algorithms to detect a variety of events across a large number of stochastic replications where the influence of uncertainty can be controlled. The software also allows historical data which is free from known outbreaks to be combined with simulated outbreak data to produce files for algorithm performance assessment. CONCLUSION: This simulation model provides a flexible method to generate data which may be useful for the evaluation and comparison of outbreak detection algorithm performance

    An information theoretic approach to insulin sensing by human kidney podocytes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordPodocytes are key components of the glomerular filtration barrier (GFB). They are insulin-responsive but can become insulin-resistant, causing features of the leading global cause of kidney failure, diabetic nephropathy. Insulin acts via insulin receptors to control activities fundamental to GFB integrity, but the amount of information transferred is unknown. Here we measure this in human podocytes, using information theory-derived statistics that take into account cell-cell variability. High content imaging was used to measure insulin effects on Akt, FOXO and ERK. Mutual Information (MI) and Channel Capacity (CC) were calculated as measures of information transfer. We find that insulin acts via noisy communication channels with more information flow to Akt than to ERK. Information flow estimates were increased by consideration of joint sensing (ERK and Akt) and response trajectory (live cell imaging of FOXO1-clover translocation). Nevertheless, MI values were always <1Bit as most information was lost through signaling. Constitutive PI3K activity is a predominant feature of the system that restricts the proportion of CC engaged by insulin. Negative feedback from Akt supressed this activity and thereby improved insulin sensing, whereas sensing was robust to manipulation of feedforward signaling by inhibiting PI3K, PTEN or PTP1B. The decisions made by individual podocytes dictate GFB integrity, so we suggest that understanding the information on which the decisions are based will improve understanding of diabetic kidney disease and its treatment.Kidney Research UK Gran

    Manual / Issue 7 / Alchemy

    Get PDF
    Manual, a journal about art and its making. Alchemy. The seventh issue. Manual 7 (Alchemy) prompts the unexpected and emergent to manifest. To engage as an alchemist/artist is to be the perpetual student of the present moment, to synthesize culture, so-called science, and the implications of existential borders into a discipline that is repeatable, a practice. Art and alchemy are not singular, unified pursuits. Their practitioners are trans-disciplinary, disjointed, and solitary in their practice, and their labor and the ordering of their lives become porous, overlaid in the pursuit of other-than or beyond-dominant modes of understanding. Alchemy and art are not about finding resolution, but building the capacity for curiosity, formulating questions that invest fields of knowledge with possibility, prompting the unexpected and emergent to manifest. —Bryan McGovern Wilson, from the introduction to Issue 7: Alchemy Softcover, 76 pages. Published 2016 by the RISD Museum. Manual 7 (Alchemy) contributors include Markus Berger, Rachel Berwick, Stephen S. Bush, CA Conrad, Florence Friedman, Doreen Garner, Michael Grugl, Kate Irvin, Mimi Leveque, Dominic Molon, Douglas R. Nickel, Emily J. Peters, Elizabeth A. Williams, Bryan McGovern Wilson, and Diming Stella Zhong.https://digitalcommons.risd.edu/risdmuseum_journals/1033/thumbnail.jp

    Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infections due to enterococci

    Get PDF
    BACKGROUND: Enterococci are the third leading cause of nosocomial bloodstream infection (BSI). Vancomycin resistant enterococci are common and provide treatment challenges; however questions remain about VRE's pathogenicity and its direct clinical impact. This study analyzed the inflammatory response of Enterococcal BSI, contrasting infections from vancomycin-resistant and vancomycin-susceptible isolates. METHODS: We performed a historical cohort study on 50 adults with enterococcal BSI to evaluate the associated systemic inflammatory response syndrome (SIRS) and mortality. We examined SIRS scores 2 days prior through 14 days after the first positive blood culture. Vancomycin resistant (n = 17) and susceptible infections (n = 33) were compared. Variables significant in univariate analysis were entered into a logistic regression model to determine the affect on mortality. RESULTS: 60% of BSI were caused by E. faecalis and 34% by E. faecium. 34% of the isolates were vancomycin resistant. Mean APACHE II (A2) score on the day of BSI was 16. Appropriate antimicrobials were begun within 24 hours in 52%. Septic shock occurred in 62% and severe sepsis in an additional 18%. Incidence of organ failure was as follows: respiratory 42%, renal 48%, hematologic 44%, hepatic 26%. Crude mortality was 48%. Progression to septic shock was associated with death (OR 14.9, p < .001). There was no difference in A2 scores on days -2, -1 and 0 between the VRE and VSE groups. Maximal SIR (severe sepsis, septic shock or death) was seen on day 2 for VSE BSI vs. day 8 for VRE. No significant difference was noted in the incidence of organ failure, 7-day or overall mortality between the two groups. Univariate analysis revealed that AP2>18 at BSI onset, and respiratory, cardiovascular, renal, hematologic and hepatic failure were associated with death, but time to appropriate therapy >24 hours, age, and infection due to VRE were not. Multivariate analysis revealed that hematologic (OR 8.4, p = .025) and cardiovascular failure (OR 7.5, p = 032) independently predicted death. CONCLUSION: In patients with enterococcal BSI, (1) the incidence of septic shock and organ failure is high, (2) patients with VRE BSI are not more acutely ill prior to infection than those with VSE BSI, and (3) the development of hematologic or cardiovascular failure independently predicts death

    Stereochemical Insignificance Discovered in Acinetobacter baumannii Quorum Sensing

    Get PDF
    Stereochemistry is a key aspect of molecular recognition for biological systems. As such, receptors and enzymes are often highly stereospecific, only recognizing one stereoisomer of a ligand. Recently, the quorum sensing signaling molecules used by the nosocomial opportunistic pathogen, Acinetobacter baumannii, were identified, and the primary signaling molecule isolated from this species was N-(3-hydroxydodecanoyl)-l-homoserine lactone. A plethora of bacterial species have been demonstrated to utilize 3-hydroxy-acylhomoserine lactone autoinducers, and in virtually all cases, the (R)-stereoisomer was identified as the natural ligand and exhibited greater autoinducer activity than the corresponding (S)-stereoisomer. Using chemical synthesis and biochemical assays, we have uncovered a case of stereochemical insignificance in A. baumannii and provide a unique example where stereochemistry appears nonessential for acylhomoserine lactone-mediated quorum sensing signaling. Based on previously reported phylogenetic studies, we suggest that A. baumannii has evolutionarily adopted this unique, yet promiscuous quorum sensing system to ensure its survival, particularly in the presence of other proteobacteria
    • …
    corecore