109 research outputs found

    The Law and the Brain: Judging Scientific Evidence of Intent

    Get PDF
    This essay addresses the issue of judges deciding what scientific evidence is admissible. The primary focus is the admissibility of expert mental state testimony in criminal cases. The issue is addressed by answering two questions: 1) how does science work and 2) how does the brain work

    Actus Reus, Mens Rea, and Brain Science: What Do Volition and Intent Really Mean?

    Get PDF
    The foundational elements of criminal law, actus reus and mens rea, are vague, imprecise, and indeterminate categories that are based on outdated notions about human behavior. These confused categories affect not only what legally constitutes choice, volition, and intent, but also the defendant\u27s ability to present evidence (since the categories define the evidence that will be admissible), and ultimately, criminal liability. In this Article we explain how neuroscience allows us to reconsider these legal concepts and conceive a more informed view of human behavior (and therefore criminal liabilty). The Article explains how distortions in brain function affect the way people perceive reality and how that distortion affects their choices, volition, and intent. It proposes that a more expansive category, encompassing both foundational elements but with a more expanded definition of choice, volition, and intent, would enable judges to permit the mentally ill accused to present scientifically valid expert testimony about how their illness affects behavior so that the jury will be able to reach an informed decision

    Gamma oscillations in the pedunculopontine nucleus are regulated by F-actin: neuroepigenetic implications

    Get PDF
    The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 μM, a promoter of F-actin stabilization), or latrunculin-B (1 μM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.Fil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados Unido

    The Critical Role of Intrinsic Membrane Oscillations

    Get PDF
    Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions throughout the brain and have been found to influence the timing of action potentials induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are calcium channel-dependent. These oscillations allow neurons to fire coherently at preferred frequencies and represent the main mechanism for maintaining high frequency network activity, especially in the cortex. Because cortical circuits are incapable of maintaining high frequency activity in the gamma range for prolonged periods, those processes dependent on continuous gamma band activity are subserved by subthreshold oscillations. As such, intrinsic oscillations, coupled with synaptic circuits, are essential to prolonged maintenance of such functions as sensory perception and "binding", problem solving, memory, waking, and rapid eye movement (REM) sleep.Fil: Lee, Sang-Hun. Center For Translational Neuroscience; Estados UnidosFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Garcia Rill, Edgar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Pedunculopontine arousal system physiology – Implications for insomnia

    Get PDF
    AbstractWe consider insomnia a disorder of waking rather than a disorder of sleep. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of insomnia, mainly representing an overactive waking drive. We determined that high frequency activity during waking and REM sleep is controlled by two different intracellular pathways and channel types in PPN cells. We found three different PPN cell types that have one or both channels and may be active during waking only, REM sleep only, or both. These discoveries point to a specific mechanism and novel therapeutic avenues for insomnia

    Pedunculopontine arousal system physiology - Implications for schizophrenia

    Get PDF
    Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.Fil: Garcia Rill, Edgar. University Of Arkansas For Medical Sciences; Estados UnidosFil: D'Onofrio, Stasia. University Of Arkansas For Medical Sciences; Estados UnidosFil: Mahaffey, Susan. University Of Arkansas For Medical Sciences; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Effects of Glutamate Receptor Agonists on the P13 Auditory Evoked Potential and Startle Response in the Rat

    Get PDF
    The P13 potential is the rodent equivalent of the P50 potential, which is an evoked response recorded at the vertex (Vx) 50 ms following an auditory stimulus in humans. Both the P13 and P50 potentials are only present during waking and rapid eye movement (REM) sleep, and are considered to be measures of level of arousal. The source of the P13 and P50 potentials appears to be the pedunculopontine nucleus (PPN), a brainstem nucleus with indirect ascending projections to the cortex through the intralaminar thalamus, mediating arousal, and descending inhibitory projections to the caudal pontine reticular formation (CPRF), which mediates the auditory startle response (SR). We tested the hypothesis that intracranial microinjection (ICM) of glutamate (GLU) or GLU receptor agonists will increase the activity of PPN neurons, resulting in an increased P13 potential response, and decreased SR due to inhibitory projections from the PPN to the CPRF, in freely moving animals. Cannulae were inserted into the PPN to inject neuroactive agents, screws were inserted into the Vx in order to record the P13 potential, and electrodes inserted into the dorsal nuchal muscle to record electromyograms and SR amplitude. Our results showed that ICM of GLU into the PPN dose-dependently increased the amplitude of the P13 potential and decreased the amplitude of the SR. Similarly, ICM of N-methyl-d-aspartic acid or kainate into the PPN increased the amplitude of the P13 potential. These findings indicate that glutamatergic input to the PPN plays a role in arousal control in vivo, and changes in glutamatergic input, or excitability of PPN neurons, could be implicated in a number of neuropsychiatric disorders with the common symptoms of hyperarousal and REM sleep dysregulation
    corecore