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Abstract
Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions 
throughout the brain and have been found to influence the timing of action potentials 
induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are 
calcium channel-dependent. These oscillations allow neurons to fire coherently at preferred 
frequencies and represent the main mechanism for maintaining high frequency network 
activity, especially in the cortex. Because cortical circuits are incapable of maintaining high 
frequency activity in the gamma range for prolonged periods, those processes dependent on 
continuous gamma band activity are subserved by subthreshold oscillations. As such, intrinsic 
oscillations, coupled with synaptic circuits, are essential to prolonged maintenance of such 
functions as sensory perception and “binding”, problem solving, memory, waking, and rapid 
eye movement (REM) sleep.

Introduction

Intrinsic membrane oscillations were discovered in 1986 [1], and, despite a number 
of excellent studies describing the critical role intrinsic membrane oscillations play, many 
neuroscientists are unaware of their importance, especially the role of gamma band for 
higher cognitive function. This mini-review will address the concept that intrinsic oscillations 
influence the timing of action potentials (AP) induced by synaptic inputs, and represent the 
main mechanism for maintaining high frequency network activity, especially in the cortex. 
This is because cortical circuits appear incapable of maintaining gamma frequencies using 
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only synaptic inputs. We include a thorough description of findings on intrinsic properties 
and their underlying mechanisms in mesopontine and hippocampal regions not described 
in detail elsewhere. These are critical regions that appear to impart high frequency influence 
on higher centers, thus modulating the incidence and maintenance of gamma activity at the 
level of the cortex.

History

Rhythmic subthreshold oscillations were first described in the inferior olive [1]. 
They were calcium-dependent and fired at 1-20 Hz. Soon after, subthreshold oscillations 
were discovered in entorhinal cortex and these fired in the theta range and were sodium-
dependent [2]. These were followed by findings demonstrating gamma band subthreshold 
oscillations in the cortex and thalamus, both calcium-dependent [3, 4]. Other groups described 
subthreshold oscillations in the entorhinal cortex [5, 6], and olfactory bulb [7], as well as 
the dorsal cochlear nucleus [8]. Importantly, these studies established that subthreshold 
oscillations influenced the timing of APs resulting from synaptic inputs, and triggered the 
exact occurrence of APs. That is, these membrane oscillations dictated the timing of firing of 
APs in a circuit [9]. While the amplitude of these oscillations may be low, in the 1-5 mV range, 
APs are more likely to reach AP threshold, facilitating firing that occurs at the peaks of the 
oscillations, providing a stable frequency for ensembles of cells [9].

Cortical Synaptic Limits

Sensory perception, problem solving, memory, waking, and rapid eye movement (REM) 
sleep have all been proposed to involve gamma frequency oscillations [10-14]. Moreover, such 
coherent events have been proposed to occur at cortical [15], or thalamocortical levels [3]. 
That is, some of this activity depends on cortico-cortical associations, as well as reverberating 
cortico-thalamo-cortical activity [16]. The mechanisms involved include inhibitory cortical 
interneurons manifesting intrinsic oscillatory activity at gamma frequencies [3, 17], and 
many were found to be electrically coupled [18]. Fast rhythmic bursting pyramidal neurons, 
some of which are electrically coupled, exhibit intrinsic oscillations [19]. The synchronous 
activation at gamma band across thalamocortical [20, 21], and other neuronal groups appears 
to contribute to the merger, or “binding”, of information from separate cortical regions 
[22]. Conversely, disturbances in gamma oscillations are thought to be present in diseases 
like schizophrenia and Alzheimer’s disease [16, 23-25]. Gamma activity is known to occur 
occasionally during slow wave sleep states and anesthesia, but their brief manifestation of 
gamma activity may not be sufficient to maintain consciousness [26]. That is, consciousness 
may be associated with continuous or maintained gamma band activity, but not during 
interrupted gamma activity [27]. In conclusion, cortical circuits must maintain reverberation 
at gamma frequencies for prolonged periods for perception and consciousness to occur. 

However, there is an unstated assumption that cortical synapses can maintain cortico-
cortical association and thalamocortical reverberating signaling at gamma frequencies for 
prolonged periods. But, cortical synaptic connections alone may not be able to maintain 
circuit firing at gamma frequencies (~30-90 Hz), so that intrinsic membrane properties 
appear essential to the maintenance of gamma band activity. For example, considering the 
primary visual pathway, which manifests high synaptic security, flicker fusion of visual inputs 
is evidence that cortical circuits cannot “follow” individual visual stimuli presented at rates 
above 35 Hz [28]. Primary auditory cortex evoked responses can follow stimuli presented 
up to about 20 Hz [29]. On the other hand, cells with intrinsic membrane properties, 
coupled with synaptic interactions, may be what allows the circuit as a whole to fire at a high 
frequency, and is necessary for maintaining high frequencies across the circuit, especially in 
the gamma range. 
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Thus, subthreshold oscillations help circuits maintain a stable frequency rather than 
generating a range of different frequencies. This point is illustrated in Figure 1, in which two 
cell groups, in one case the population has subthreshold oscillations (A) and in the other, no 
intrinsic oscillations are present (B). If there is a synaptic failure from the input to the middle 
output cell (Xs), the other two output cells will maintain a preferred firing frequency in the 
case in which oscillations are present. However, in the absence of intrinsic oscillations, the 
two output cells in Figure 1B will fire at non-coherent times, failing to maintain a stable high 
frequency.

Ubiquitous Gamma

The cortex and thalamus are not the only regions that manifest gamma frequency 
activity. Both the hippocampus and the cerebellum possess the intrinsic and synaptic 
properties necessary for generating gamma band oscillations. There is an association 
between hippocampal oscillatory activity in the gamma range (30-60 Hz) and afferents 
from the entorhinal cortex [30]. As mentioned above, entorhinal cortex neurons oscillate 
at gamma frequencies, suggesting that these afferents are critical for maintaining gamma 
oscillations in the hippocampus [31]. Gamma frequency activity of cells in the CA1 area has 
two components, fast (>65 Hz) and slow (~25-60 Hz) components that characterize the 
CA1 and CA3 subfields, respectively [32]. It has been proposed that, on the one hand, CA1 
gamma oscillations from entorhinal cortex at very high frequency are involved in providing 
information about object and place recognition in rodents [33]. On the other hand, slow 
gamma oscillations from CA1 are locked to slower frequencies in the CA3 area in charge of 
memory storage [32, 34]. That is, the two bands subserve different functions.

Fig. 1. Two cell groups, 
in one case the popula-
tion has coherent sub-
threshold oscillations 
(A) and in the other, no 
oscillations are present 
(B). In both cell groups, 
output cells receive 
common inputs, and are 
electrically connected to 
adjacent cells through 
gap junctions. Thus, 
coherent subthreshold 
oscillations can arise if 
each cells manifest sub-
threshold oscillations. 
Due to subthreshold oscillations most cells can discharge coherent action potentials at the preferred fre-
quency if excitatory inputs arrive around the peaks when neuronal excitability is high (indicated by the 
overlapping regions with solid gray bars). In contrast, the cells do not discharge action potentials if excitato-
ry inputs arrive around the trough since neuronal excitability is low. If a synapse fails in one circuit (the 
middle cell marked by X), the other layers maintain the preferred frequency. If the synapse recovers from 
the synaptic failures, the circuit ultimately regains coherent firing at that frequency. In contrast, it is likely 
that neurons, which do not manifest intrinsic subthreshold oscillations, show disrupted coherence of action 
potential discharges (B), whereas the firing frequency is similar to that of the cell group shown in A. While 
synaptic failures may not often occur at low frequencies below beta, they will certainly occur at gamma 
frequencies, particularly in the cortex.
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The Purkinje cell layer around the apex of the cerebellar lobule manifests gamma band 
activity [35, 36]. Critical for gamma oscillation generation in Purkinje cells are GABAA but 
not glutamate receptors [35]. Coherence between the cerebral cortex and cerebellar cortex 
at gamma frequencies is present during the performance of a manual precision grip task in 
monkeys [37]. In addition, cerebello-thalamic activity appears synchronized with neocortical 
activity at gamma frequencies [38]. Moreover, it was suggested that both cerebellar and 
thalamo-cortical networks oscillate at similar frequencies to enable coherent information 
exchange between regions [36].

Gamma band activity in the basal ganglia was observed to lead coherent activity in the 
cerebral cortex [39, 40]. Several groups concluded that motor cortex gamma synchronization 
reflects arousal-related activity that enables the initiation of movement [41-43]. Therefore, 
a region such as the reticular activating system (RAS), which is in charge of arousal, and the 
thalamus, may together play an early role in the facilitation of movement [44]. 

Bottom-up Gamma

We found that the pedunculopontine nucleus (PPN), in charge of waking and REM sleep, 
two states exhibiting gamma frequency activity in the EEG, possesses neurons manifesting 
gamma frequency activity when stimulated [45]. There is considerable evidence that PPN 
cells fire at gamma frequencies. Gamma band activity has been observed in the cortical EEG 
of the cat in vivo when the animal is active [17]; in the region of the PPN in humans during 
stepping, but not at rest [46]; and firing at low frequencies ~10 Hz at rest in the primate, but 
firing at gamma frequencies when the animal woke up, or when the animal began walking on 
a treadmill [47]. Thus, the same cells were involved in both arousal and motor control in the 
PPN in vitro, in vivo, and across species, including man. We discovered that every PPN neuron 
exhibited gamma band activity via high threshold, voltage-dependent calcium channels 
[48]. Later, we found that ~50% of the cells have both P/Q- and N-type calcium channels, 
while ~25% have only one of the two channels [49]. Early studies (reviewed in [50]), had 
shown that PPN neurons fire in relation to states of arousal such as “Wake-REM on” cells 
firing during both waking and REM sleep, while others fire only during waking called “Wake 
on” cells, and “REM on” cells fire only during REM sleep. We proposed that “Wake-REM on” 
neurons have both N- and P/Q-type calcium channels, that “Wake on” cells have only P/Q-
type channels, and that “REM on” neurons have only N-type channels [50].

The original description of the RAS described the effect of electrical stimulation as 
inducing “tonic” or “continuous” arousal [51]. Later studies showed that lesions of this 
region would eliminate “tonic” arousal [52]. Such tonic activity in the PPN probably requires 
both the channels capable of fast oscillations and the circuitry that involves activating these 
channels for the maintenance of gamma band activity in the RAS [3, 9, 48, 50, 53-55]. We 
proposed that the sensory input to the RAS during waking provides the continuous activation 
of the RAS that allows the maintenance of the background of bottom-up gamma activity. Such 
activity is necessary to support the process that reliably assesses the world around us on a 
continuous basis, that is, it is essential for the process of preconscious awareness.

Bottom-up or feed forward brain processes have been proposed to depend on sensory 
events such as stimuli that activate lower brain centers. The information rises to higher centers 
to promote perception. Top-down or feedback processing refers to the influence imposed by 
higher centers on the perception of and attention to incoming stimuli. Gamma frequencies 
for generating bottom-up, and beta frequencies for inducing top-down, processes were 
proposed as feed forward and feedback channels, respectively, using different frequency 
bands [56]. The PPN is likely an early step of the generation of bottom-up gamma activity, 
which it relays to the intralaminar thalamus. We found that every cell in the parafascicular 
nucleus manifested high threshold calcium channels [57], a region known to relay gamma 
activity to the cortex.  Cells in the Subcoeruleus region exhibited sodium-dependent gamma 
oscillations [45], a region known to relay gamma activity to the hippocampus.
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Figure 2 illustrates the organization of arousal-related structures generating bottom-
up gamma activity during waking and REM sleep. Sensory input activates PPN neurons, 
all of which manifest N-type and/or P/Q-type mediated intrinsic membrane oscillations. 
This information is relayed to the intralaminar thalamus, specifically the parafascicular 
nucleus, which itself manifests similar calcium channel-dependent intrinsic oscillations. The 
intralaminar thalamus sends its projections to the upper layers of the cortex. Also, the PPN 
sends descending projections, especially during REM sleep, to the Subcoeruleus nucleus that 
manifests sodium-dependent subthreshold oscillations and projects to the hippocampus. How 
can the synchrony in the gamma oscillations of multiple cell assemblies in above mentioned 
brain areas be achieved, especially considering the long axon conductance delays? There 
are excellent review articles describing the mechanisms underlying interregional coherence 
of network oscillations (see [58] and [56]). In general, it is thought that axon collaterals 
of glutamatergic projection neurons (e.g., [59]), long-range interneurons (e.g., [60]), and 
a third region, which is reciprocally connect to two regions (e.g., [61]), contribute to the 
synchrony between spatially discrete oscillators. Thus, interregional temporal coordination 
between spatially separate brain regions described in Figure 2 might be achieved via similar 
mechanisms to those described above.
The issue of coherence between distant cortical sites has received increased attention. 
Recent findings showed that gamma band activity at the level of the cortex during waking 
was characterized by coherence across regions, but gamma band activity in the cortex during 
REM sleep had an absence of coherence [62, 63]. In agreement with the latter, injections 
of the cholinergic agonist carbachol induced REM sleep with cataplexy (alert wakefulness 
without muscle tone) that was characterized by decreased gamma band coherence in the 
cortex [64]. Since the brainstem is the origin of REM sleep drive (for review, see [53]), it is 
likely that the manifestation of gamma band activity during REM sleep at the level of the 
cortex begins in the brainstem. We should note that carbachol induced REM sleep which led 
to decreased coherence, while cataplexy (alert wakefulness without muscle tone) induced 
increased coherence [64]. Since carbachol will activate both the “waking pathway” and the 
“REM sleep pathway” discussed above, it is not surprising that these injections induced lack 
of coherence when REM sleep was elicited and increased coherence when alert wakefulness 
without muscle tone was elicited. We assume that the manifestation of cortical gamma band 
activity during waking originates at least in part in the brainstem as well. Therefore, this line 

Fig. 2. Diagram of bottom-up 
gamma projections. Sensory in-
put activates pedunculopontim-
ne nucleus (PPN) dendrites. All 
PPN cells have N-type channel- 
and/or P/Q-type channel-de-
pendent subthreshold gamma 
oscillations and project to the 
parafascicular nucleus in the 
intralaminar thalamus (ILT) ad-
jacent to the fasciculus retrofle-
xus (Fr), which projects to upper 
layers of the cortex (Cx). The PPN 
also projects to the Subcoeruleus 
nucleus dorsalis (SubCD), which 
manifests sodium (Na) chan-
nel-dependent subthreshold 
gamma oscillations (STO) and 
projects to the hippocampus (Hipp). The hippocampus also manifests sodium channel-dependent subth-
reshold gamma oscillations. 
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of evidence suggests that, a) brainstem centers drive gamma band activity that is manifested 
in the cortical EEG; b) during waking, brainstem-thalamic projections are involved in 
coherence across regions; and c) during REM sleep, brainstem-thalamic projections drive 
cortical EEG rhythms without coherence between distant sites.

Frequency Specific Hippocampal Interneurons

In the hippocampus, subtypes of GABAergic interneurons represent ~11% of the neuronal 
population in the subregions [65], and are involved in almost all aspects of hippocampal circuit 
functions, including coordinated network activity (e.g., theta and gamma oscillations) [66]. We 
recently found that 5 major subtypes of hippocampal interneurons −parvalbumin-expressing 
basket cells (PVBCs), cannabinoid type 1 receptor-expressing basket cells (CB1BCs), Schaffer 
collateral-associated cells (SCAs), neurogliaform cells, and ivy cell, each produced distinct 
frequency bands of sodium-dependent intrinsic oscillations [67]. Specifically, a majority of PVBCs 
(83%) produced intrinsic gamma oscillations near their AP thresholds (see Figure 2). However, the 
remaining PVBCs (17%), CB1BCs, SCAs, neurogliaform cells, and ivy cells manifested intrinsic 
theta, but not gamma, oscillations near their AP thresholds. In the same studies, we demonstrated 
that a portion of SCAs (17%) and neurogliaform cells (6%) produced intrinsic beta oscillations 
(15−30 Hz). Our findings suggest not only that major subtypes of GABAergic interneurons 
manifest cell type-specific intrinsic theta, beta, or gamma oscillations, but also that within-
subtype differences in intrinsic membrane oscillations arise in PVBCs, SCAs, and neurogliaform 
cells. Such information is critical to formulating precise functional models of the generation of 
specific frequencies related to specific hippocampal operations. Previously [67], we examined the 
properties of intrinsic oscillations of only 5 of 21 subtypes of GABAergic interneurons in the CA1 
subregion. Given that other major subtypes of GABAergic interneurons, e.g., axo-axonic cells, 
bistratified cells, and oriens-lacunosum moleculare interneurons, are known to be also involved 
in theta and gamma oscillations [68], future studies should determine the properties of intrinsic 
oscillations of other interneurons.  

How is cortical network activity generated? At least two distinct types of models of network 
activity have been proposed: intrinsic resonance property-based models and circuit-based models. 
Our findings of cell type-specific intrinsic oscillations in hippocampal GABAergic interneurons are 
in general agreement with intrinsic resonance property-based theta and gamma models. Neuronal 
intrinsic resonance properties cause hippocampal interneurons to produce intrinsic subthreshold 
oscillations without synaptic interactions [67, 69-71]. Although the precise role of intrinsic 
oscillations of hippocampal interneurons in coordinated network activity is largely unknown, 
there is evidence indicating that intrinsic subthreshold oscillations are key factors in network 
oscillations [44, 48, 72-74]. Thus, we hypothesize that intrinsic oscillations of gamma cells (i.e., 
83% of PVBCs tested; [67]) may facilitate, or even cause, precise timing of APs during network 
gamma oscillations. This is particularly true if the oscillations of multiple cells synchronize. 
Intrinsic oscillations arising from PVBCs and neurogliaform cells can be synchronized in the CA1 
network level via electrical synapses, since they are highly coupled with their own or other types 
of GABAergic interneurons [75-79]. On the other hand, intrinsic theta oscillations of theta cells 
(i.e., 17% of PVBCs tested; [67], CB1BCs, SCAs, neurogliaform cells, and ivy cells are conducive 
to precise AP discharges during hippocampal theta oscillations.

In circuit-based models, GABAergic interneurons are critically involved in gamma 
oscillations through reciprocal interactions via chemical synapses with pyramidal cells 
(i.e., pyramidal-interneuron network gamma, as in ‘PING’ model), or other GABAergic 
interneurons (i.e., interneuron network gamma, as in ‘ING’ model) [58]. Similar to models of 
gamma oscillations, hippocampal theta oscillations are thought to arise primarily from synaptic 
interactions of GABAergic interneurons with excitatory cells [80-83]. Since not only synaptic and 
circuit properties of individual neurons, but also intrinsic resonant properties can contribute to 
hippocampal network activity, the two types of hippocampal models of network activity are not 
mutually exclusive.
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Since precise roles of intrinsic oscillations of hippocampal GABAergic interneurons in 
hippocampal network oscillations are largely unknown, experimental and computational studies 
should determine the roles. Our data on intrinsic oscillatory properties of neurochemically 
identified GABAergic interneurons will be of critical importance in computational models of 
hippocampal gamma and theta oscillations. It is reasonable to expect that intrinsic theta and gamma 
oscillations of GABAergic interneurons in the hippocampus are key factors in network theta and 
gamma activity if these data are incorporated into existing computational models of the CA1 
region, such as an innovative full-scale computational model based on experimental results on 
intrinsic, synaptic, and circuit properties of neurochemically identified neurons [80]. The critical 
role of intrinsic subthreshold oscillations in network gamma oscillations has been shown in the 
olfactory bulb using computational and experimental approaches [72, 84]. Accordingly, future 
studies should also experimentally determine if intrinsic theta and gamma oscillations of 
hippocampal interneurons simultaneously occur with hippocampal network activity, and 
determine if hippocampal interneurons, which generate intrinsic oscillations, fire at the 
peaks of intrinsic oscillations. 

Finally, given that network theta and gamma activity are often compromised in a variety 
of neurological and psychiatric disorders [85-91], and abnormal activities of hippocampal 
interneurons are often associated with these diseases [92-100], future research should also 
determine if disruption of intrinsic oscillations in one or more of the major interneuron 
subtypes occurs in neuropathological conditions such as epilepsy. The results from 
such research will provide new insights into the mechanisms underlying compromised 
hippocampal rhythmogenesis in various diseases, and could provide a basis for novel 
interventions to restore compromised hippocampal theta and gamma oscillations. 
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