659 research outputs found
High-fat feeding reprograms maternal energy metabolism and induces long-term postpartum obesity in mice.
BackgroundExcessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity.MethodsC57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery.ResultsWe found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation.ConclusionsThese results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT
Nearly critical superfluid: effective field theory and holography
We study a nearly critical superfluid system from two complementary
approaches. Within the first approach, we formulate a Schwinger-Keldysh
effective field theory (EFT) for the system when it is located slightly above
the critical temperature. . The set of symmetries, particularly the dynamical
Kubo-Martin-Schwinger (KMS) symmetry and chemical shift symmetry, strictly
constrains the form of EFT action. Within the second approach, using the
holographic Schwinger-Keldysh technique, we derive the effective action for a
``microscopic'' holographic superfluid, confirming the EFT construction. A
systematic inclusion of non-Gaussianity is one highlight of present study.Comment: 35 page
PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST
We describe PSR J1926-0652, a pulsar recently discovered with the
Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive
single-pulse detections from FAST and long-term timing observations from the
Parkes 64-m radio telescope, we probed phenomena on both long and short time
scales. The FAST observations covered a wide frequency range from 270 to 800
MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at
least four profile components, short-term nulling lasting from 4 to 450 pulses,
complex subpulse drifting behaviours and intermittency on scales of tens of
minutes. While the average band spacing P3 is relatively constant across
different bursts and components, significant variations in the separation of
adjacent bands are seen, especially near the beginning and end of a burst. Band
shapes and slopes are quite variable, especially for the trailing components
and for the shorter bursts. We show that for each burst the last detectable
pulse prior to emission ceasing has different properties compared to other
pulses. These complexities pose challenges for the classic carousel-type
models.Comment: 13pages with 12 figure
Elimination of the confrontation between theory and experiment in flexoelectric Bi2GeO5
In this paper, we have investigated the flexoelectric effect of Bi2GeO5(BGO),
successfully predicted the maximum flexoelectric coefficient of BGO, and tried
to explore the difference between experimental and simulated flexoelectric
coefficients.Comment: 16 pages,6 figure
Berberine Improves Insulin Sensitivity by Inhibiting Fat Store and Adjusting Adipokines Profile in Human Preadipocytes and Metabolic Syndrome Patients
Berberine is known to inhibit the differentiation of 3T3-L1 cells in vitro, improve glycemic control, and attenuate dyslipidemia in clinical study. The aim of this study was to investigate the effects of berberine on preadipocytes isolated from human omental fat and in metabolic syndrome patients treated with berberine for 3 months. We have shown that treatment with 10 μM berberine resulted in a major inhibition of human preadipocyte differentiation and leptin and adiponectin secretion accompanied by downregulation of PPARγ2, C/EBPα, adiponectin, and leptin mRNA expression. After 3 months of treatment, metabolic syndrome patients showed decrease in their BMI (31.5 ± 3.6 versus 27.4 ± 2.4 kg/m2) and leptin levels (8.01 versus 5.12 μg/L), as well as leptin/adiponectin ratio and HOMA-IR. These results suggest that berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokine profile in human preadipocytes and metabolic syndrome patients
Hyper-sampling imaging
In our research, we have developed a novel mechanism that allows for a
significant reduction in the smallest sampling unit of digital image sensors
(DIS) to as small as 1/16th of a pixel, through measuring the intra-pixel
quantum efficiency for the first time and recomputing the image. Employing our
method, the physical sampling resolution of DIS can be enhanced by 16 times.
The method has undergone rigorous testing in real-world imaging scenarios
Amphotropic azobenzene derivatives with oligooxyethylene and glycerol based polar groups
A series of amphiphilic azobenzenes with one to three lipophilic alkyl chains at one end and polar groups with oligooxyethylene (EO) and racemic 3-glyceryl units at the opposite end was synthesized and their thermotropic and lyotropic liquid crystalline self-assemblies were studied by POM, DSC and XRD. Tilted and non-tilted lamellar phases with interdigitated double layer structures (SmCd and SmAd, respectively) were found for the compounds with a single alkyl chain, whereas hexagonal columnar phases were formed by the compounds with two or three alkyl chains. The effect of protic solvents, like formamide, ethylene glycol and water, was investigated for representative examples. For the compounds with the single chain, induction and stabilization of SmA phases were observed, though broad regions of lyotropic SmC phases were retained in most cases. Depending on the structure of the polar group, the hexagonal columnar phases were either removed or drastically stabilized by the solvents. Photoisomerisation of an azobenzene chromophore was also studied
Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy
- …
