15 research outputs found

    Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis

    Get PDF
    The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors

    Combinatorial treatment of curcumin or silibinin with doxorubicin sensitises high-risk neuroblastoma

    No full text
    Aim: Neuroblastoma is a pediatric cancer of the sympathetic nervous system. Using various parameters including stage of the disease, amplification status of N-Myc, DNA index and histopathology, neuroblastoma can be stratified into low- and high-risk groups. Recent advances in treatment have significantly improved the survival rate of low-risk neuroblastoma patients. However, the overall survival rate of high-risk neuroblastoma group, especially N-Myc amplified patients, is poor. Moreover, the survivors of both low- and high-risk neuroblastoma manifest adverse side effects to chemotherapy and thus their quality of life is impaired. Considering all these factors, there is an urgent need to develop therapeutic strategies with natural compounds to improve the survival rate and to reduce the side effects. In this study, we hypothesised that the mesenchymal nature of neuroblastoma cells is a reason, at least in part, for the aggressive and treatment resistant phenotype.Methods: In order to validate our hypothesis, we used publicaly available RNA-Seq data, in vitro assays and xenograft mouse models.Results: Using a combinatorial treatment of mesenchymal-to-epithelial inducers (curcumin or silibinin) with doxorubicin significantly increased the cell death in a panel of neuroblastoma cells in vitro. Follow up analysis in vivo, confirmed the therapeutic benefit of utilising the combination of curcumin with doxorubicin. The combinatorial therapy significantly reduced the tumor burden and increased the survival of mice implanted with high-risk neuroblastoma cells.Conclusion: Taken together, this study shows the efficacy of using curcumin in combination with doxorubicin to improve the survival rate and has the potential to enhance the quality of life of neuroblastoma patients

    ExoCarta: A Web-Based Compendium of Exosomal Cargo

    Full text link
    Estate subdivision of 165 acres laid out to accommodate topography and discourage through traffic.general view, view of hedge-lined property, from street, 198

    Combined absence of TRP53 target genes ZMAT3, PUMA and p21 cause a high incidence of cancer in mice

    No full text
    Transcriptional activation of target genes is essential for TP53-mediated tumour suppression, though the roles of the diverse TP53-activated target genes in tumour suppression remains poorly understood. Knockdown of ZMAT3, an RNA-binding zinc-finger protein involved in regulating alternative splicing, in haematopoietic cells by shRNA caused leukaemia only with the concomitant absence of the PUMA and p21, the critical effectors of TRP53-mediated apoptosis and cell cycle arrest respectively. We were interested to further investigate the role of ZMAT3 in tumour suppression beyond the haematopoietic system. Therefore, we generated Zmat3 knockout and compound gene knockout mice, lacking Zmat3 and p21, Zmat3 and Puma or all three genes. Puma-/-p21-/-Zmat3-/- triple knockout mice developed tumours at a significantly higher frequency compared to wild-type, Puma-/-Zmat3-/- or p21-/-Zmat3-/-deficient mice. Interestingly, we observed that the triple knockout and Puma-/-Zmat3-/- double deficient animals succumbed to lymphoma, while p21-/-Zmat3-/- animals developed mainly solid cancers. This analysis suggests that in addition to ZMAT3 loss, additional TRP53-regulated processes must be disabled simultaneously for TRP53-mediated tumour suppression to fail. Our findings reveal that the absence of different TRP53 regulated tumour suppressive processes changes the tumour spectrum, indicating that different TRP53 tumour suppressive pathways are more critical in different tissues.This work was supported by grants and fellowships from the Australian Phenomics Network (APN), the Australian National Health and Medical Research Council (NHMRC) to MJH and AS (1143105), Programme Grant to AS (1016701), Investigator grant to AS (2007887), Investigator Grant to MJH (2017971); the Leukaemia and Lymphoma Society of America to AS and MJH (LLS SCOR 7015-18); the Cancer Council of Victoria Project grant to AS (1052309) and Venture Grant to MJH and AS; support to AS from the estate of Anthony (Toni) Redstone OAM; support to AJ from Spanish Ministry of Economy and Development Grant (PID2021-127710OB-I00) and Programa Captació de Talent Investigador ‘La Caixa’ foundation (51110009). AJ is supported by Ramon y Cajal Research Fellowship (RYC2018-025244-I), AS and MJH are supported by NHMRC Fellowships (1020363 and 1156095), MSB is supported by Cancer Council Victoria Postdoctoral Fellowship and Swedish Cancer Society (21 0355 PT). This work was made possible through the Victorian Government Operational Infrastructure Support and Australian Government, the ‘Unidad de Excelencia María de Maeztu’ funded by the Spanish Government

    BCL-2 family protein BOK is a positive regulator of uridine metabolism in mammals.

    Get PDF
    BCL-2 family proteins regulate the mitochondrial apoptotic pathway. BOK, a multidomain BCL-2 family protein, is generally believed to be an adaptor protein similar to BAK and BAX, regulating the mitochondrial permeability transition during apoptosis. Here we report that BOK is a positive regulator of a key enzyme involved in uridine biosynthesis; namely, uridine monophosphate synthetase (UMPS). Our data suggest that BOK expression enhances UMPS activity, cell proliferation, and chemosensitivity. Genetic deletion of results in chemoresistance to 5-fluorouracil (5-FU) in different cell lines and in mice. Conversely, cancer cells and primary tissues that acquire resistance to 5-FU down-regulate BOK expression. Furthermore, we also provide evidence for a role for BOK in nucleotide metabolism and cell cycle regulation. Our results have implications in developing BOK as a biomarker for 5-FU resistance and have the potential for the development of BOK-mimetics for sensitizing 5-FU-resistant cancers

    Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ Vγ6+ T Cells to Skin Residency as Activated Effector Cells

    No full text
    IL-17-producing γδ T cells express oligoclonal Vγ4+ and Vγ6+ TCRs, mainly develop in the prenatal thymus, and later persist as long-lived self-renewing cells in all kinds of tissues. However, their exchange between tissues and the mechanisms of their tissue-specific adaptation remain poorly understood. Here, single-cell RNA-seq profiling identifies IL-17-producing Vγ6+ T cells as a highly homogeneous Scart1+ population in contrast to their Scart2+ IL-17-producing Vγ4+ T cell counterparts. Parabiosis demonstrates that Vγ6+ T cells are fairly tissue resident in the thymus, peripheral lymph nodes, and skin. There, Scart1+ Vγ6+ T cells display tissue-specific gene expression signatures in the skin, characterized by steady-state production of the cytokines IL-17A and amphiregulin as well as by high expression of the anti-apoptotic Bcl2a1 protein family. Together, this study demonstrates how Scart1+ Vγ6+ T cells undergo tissue-specific functional adaptation to persist as effector cells in their skin habitat.ISSN:2666-3864ISSN:2211-124
    corecore