894 research outputs found

    Lamination And Microstructuring Technology for a Bio-Cell Multiwell array

    Full text link
    Microtechnology becomes a versatile tool for biological and biomedical applications. Microwells have been established long but remained non-intelligent up to now. Merging new fabrication techniques and handling concepts with microelectronics enables to realize intelligent microwells suitable for future improved cancer treatment. The described technology depicts the basis for the fabrication of a elecronically enhanced microwell. Thin aluminium sheets are structured by laser micro machining and laminated successively to obtain registration tolerances of the respective layers of 5..10\^AÎĽ\mum. The microwells lasermachined into the laminate are with 50..80\^AÎĽ\mum diameter, allowing to hold individual cells within the well. The individual process steps are described and results on the microstructuring are given.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Detection of serum anti-B/B' UsnRNP antibodies in patients with connective tissue diseases by immunoblotting

    Get PDF
    Objective: To investigate the reliability of the immunoblot method in the detection of serum immunoreactivity towards the B/B' polypeptides of U small nuclear ribonucleoproteins (UsnRNP) and to assess the significance of these antibodies in connective tissue disease (CTD) patients. Methods: We tested the sera of 348 patients with CTD (101 SLE, 51 systemic sclerosis, 53 primary Sjogren's syndrome, 27 poly/dermatomyositis, 15 rheumatoid arthritis and 101 overlap CTD), of 31 matched healthy subjects and 13 patients with primary Epstein-Barr virus (EBV) infection with high titre IgG anti-EBV antibodies. IgG anti-UsnRNP antibodies were determined by immunoblotting on nuclear extract from Raji cells (an EBV-immortalised human B lymphoid cell line) and Jurkat cells (a human T lymphoid cell line). Anti-dsDNA antibodies were detected by indirect immunofluorescence on Crithidia luciliae and anti-ENA by counterimmunoelectrophoresis. Anti-dsDNA activity and avidity were measured in SLE sera by ELISA with Scatchard analysis. Results were statistically analysed by chi-square and Mann-Whitney tests. Results: A high frequency of anti-B/B' antibodies was found in the sera of CTD patients, confined to SLE (54.4%) and overlap CTD with SLE features (55,2%). Anti-B/B' immune reactivity was closely associated with other anti-UsnRNP specificities, gel precipitating anti-nRNP and anti-P antibodies. Nine out of 15 (60%) anti-B/B' positive/anti-ENA negative lupus sera on Raji blots were confirmed to be positive also on Jurkat blots. The sera from patients with EBV infection provided, on Raji blots, completely different band patterns from those obtained with auto-immune sera. Conclusions. The Sm B/B' proteins are the predominant or, at least, the most frequently targeted antigens of the UsnRNP auto-immune response in SLE and "lupus-like" overlap CTD. Moreover, anti-B/B' is diagnostically specific for CTD with SLE features. Immunoblotting on human B lymphoid cells is a reliable method, in terms of sensitivity and specificity, for the detection of anti-Sm B/B' antibodies

    Gene Modulation by Peptide Nucleic Acids (PNAs) Targeting microRNAs (miRs)

    Get PDF
    Since non-viral gene therapy was developed and employed in different in vitro and in vivo experimental systems as an effective way to control and modify gene expression, RNA has been considered as a molecular target of great relevance (Li &Huang, 2008, LĂłpez-Fraga et al., 2008). In combination with standard chemotherapy, the siRNA therapy can reduce the chemoresistance of certain cancers, demonstrating its potential for treating many malignant diseases. Examples of RNA sequences to be targeted for therapeutic applications are mRNAs coding oncoproteins or RNA coding anti-apoptotic proteins for the development of anti-cancer therapy. In the last years, progresses in molecular biology have allowed to identify many genes Coding for small non coding RNA molecules, microRNA (miRNAs or miRs), able to regulate gene expression at the translation level (Huang et al., 2008, Shrivastava & Shrivastava, 2008, Sahu et al. 2007, Orlacchio et al., 2007, Williams et al., 2008, Papagiannakopoulos & Kosik, 2008). Accordingly, an increasing number of reports associate the changed expression with specific phenotypes and even with pathological conditions (Garzon & Croce, 2008, Mascellani et al., 2008, Sontheimer & Carthew, 2005, Filipowicz et al., 2005, Alvarez-Garcia & Miska, 2005). Interestingly, microRNAs play a double role in cancer, behaving both as oncogenes or tumor suppressor genes. In general, miRs promoting cancer targets mRNA coding for tumor-suppression proteins, while microRNAs exhibiting tumor-suppression properties usually target mRNAs coding oncoproteins. MicroRNAs which have been demonstrated to play a crucial role in the initiation and progression of human cancer are defined as oncogenic miRNAs (oncomiRs) (Cho, 2007). The oncomiR expression profiling of human malignancies has also identified a number of diagnostic and prognostic cancer signals (Cho, 2007, Lowery et al., 2008). Moreover, microRNAs have been firmly demonstrated to be involved in cancer metastasis (metastamiRs). Examples of metastasis-promoting microRNAs are, miR-10b (Calin et al., 2006), miR-373 and - 520c (Woods et al., 2007), miR-21, -143 and -182 (Hayashita et al., 2005; Si et al., 2007; Zhu et al.,2007). Reviews on metastamiR has been recently published Hurst et al. (Hurst et al. 2009, Edmonds et al. 2009). Reviews on metastamiRs has been recently published by Hurst et al

    Rheological and Microstructural Changes of Oat and Barley Starches During Heating and Cooling

    Get PDF
    Microstructural and rheological changes in barley and oat starch dispersions during heating and cooling were studied by light microscopy and dynamic viscoelastic measurements. The two starch pastes showed similar viscoelastic properties after gelatinization, but during cooling the 20% barley starch pastes heated at 95°C underwent a sharp transition in viscoelastic behaviour probably due to the gelation of amylose. This transition was shifted to lower temperatures at 10% starch concentration. Microstructural studies of an 8% barley starch dispersion heated to 90°C using the smear technique showed amylose to form a network structure around the granules. The granules in starch paste heated to 95°C were poorly stained and amylopectin was fragmented. Microscopic examination of an embedded section of the cooled barley starch gel showed amylose to form a continuous phase in which starch granules were dispersed. G\u27 increased below 80°C during cooling of 10% oat starch dispersions preheated at 95 °C. No rheological changes occurred when they were preheated at only 90°C. Microstructural studies of an 8% oat starch dispersion heated to 90°C using the smear technique showed amylose to form a network structure around the granules. Part of the granule structure had already broken down. Heating to 95°C induced considerable changes in the granule structure of oat starch gels. Amylopectin formed a very fine network. Microscopic examination of embedded sections of the cooled, stored gel showed a much coarser structure compared with that of the smear

    Synthesis and anticancer activity of Pt(0)-olefin complexes bearing 1,3,5-triaza-7-phosphaadamantane and N-heterocyclic carbene ligands

    Get PDF
    A series of Pt(0)-η2-olefin complexes bearing 1,3,5-triaza-7-phosphaadamantane (PTA) or N-heterocyclic carbenes are prepared following different synthetic strategies depending on the nature of coordinated alkene and spectator ligands. These new platinum(0) derivatives have been tested in vitro as anticancer agents toward three different tumor (human ovarian cancer A2780 and A2780cis and K562 myelogenous leukemia) and one non-tumor (Hacat keratinocytes) cell lines, proving to be in several cases highly and selectively cytotoxic against ovarian cancer cells. Furthermore, this antiproliferative effect is associated with the activation of an apoptosis process. In particular, complexes equipped with PTA as spectator ligand give comparable IC50 values on A2780 (cisplatin sensitive) and A2780cis (cisplatin resistant) cell lines, indirectly proving that these new Pt(0) substrates act with a mechanism of action conceivably different from cisplatin. This hypothesis is also confirmed by the fact that our compounds, in contrast to cisplatin, are not able to promote erythroid-differentiation activity on the K562 myelogenous leukemia cell line

    Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads

    Get PDF
    Peptide nucleic acids (PNAs) are a class of artificial oligonucleotide mimics that have garnered much attention as precision biotherapeutics for their efficient hybridization properties and their exceptional biological and chemical stability. However, the poor cellular uptake of PNA is a limiting factor to its more extensive use in biomedicine; encapsulation in nanoparticle carriers has therefore emerged as a strategy for internalization and delivery of PNA in cells. In this study, we demonstrate that PNA can be readily loaded into porous silicon nanoparticles (pSiNPs) following a simple salt-based trapping procedure thus far employed only for negatively charged synthetic oligonucleotides. We show that the ease and versatility of PNA chemistry also allows for producing PNAs with different net charge, from positive to negative, and that the use of differently charged PNAs enables optimization of loading into pSiNPs. Differently charged PNA payloads determine different release kinetics and allow modulation of the temporal profile of the delivery process. In vitro silencing of a set of specific microRNAs using a pSiNP-PNA delivery platform demonstrates the potential for biomedical applications

    Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNA molecules acting as gene regulators by repressing translation or by inducing degradation of the target RNA transcripts. Altered expression of miRNAs may be involved in the pathogenesis of many severe human diseases, opening new avenues in the field of therapeutic strategies, i.e., miRNA targeting or miRNA mimicking. In this context, the efficient and non-toxic delivery of premiRNA and antimiRNA molecules might be of great interest. The aim of the present paper is to determine whether an argininocalix[4]arene is able to efficiently deliver miRNA, premiRNA, and antimiRNA molecules to target cells, preserving their biological activity. This study points out that (1) the toxicity of argininocalix[4]arene 1 is low, and it can be proposed for long-term treatment of target cells, being that this feature is a pre-requisite for the development of therapeutic protocols; (2) the delivery of premiRNA and antimiRNA molecules is efficient, being higher when compared with reference gold standards available; and (3) the biological activity of the premiRNAs and antimiRNAs is maintained. This was demonstrated using the argininocalix[4]arene 1 in miRNA therapeutic approaches performed on three well-described experimental model systems: (1) the induction of apoptosis by antimiR-221 in glioma U251 cells; (2) the induction of apoptosis by premiR-124 in U251 cells; and (3) the inhibition of pro-inflammatory IL-8 and IL-6 genes in cystic fibrosis IB3-1 cells. Our results demonstrate that the argininocalix[4]arene 1 should be considered a very useful delivery system for efficient transfer to target cells of both premiRNA and antimiRNA molecules, preserving their biological activity

    Corilagin Induces High Levels of Apoptosis in the Temozolomide-Resistant T98G Glioma Cell Line

    Get PDF
    Glioblastoma multiforme (GBM), a malignant tumor of the central nervous system, has a high mortality rate; no curativetreatment is presently available and the most commonly used chemiotherapeutic drug, the alkylating agent temozolomide (TMZ), is only able to increase life expectancy and is often associated with drugresistance. Therefore, an urgent need does exist for novel drugs aimed at treating gliomas. In the present study we obtained three major results using corliagin: (a) demonstrate that it inhibits the growth of U251 glioma cells through activation of the apoptotic pathway; (b) demonstrate that it is also active on temozolomideresistant T98G glioma cells; (c) demonstrate that when used in combination with temozolomide on T98G glioma cells a higher level of pro-apototic and antiproliferative effects are observed. Our study indicates that corilagin should be investigated in more detail in order to determine if it can be developed as a potential therapeutic agent. In addition, our results suggest that corilagin could be used in combination with low dosages of other standard anticancer chemotherapeutic drugs against gliomas (such as temozolomide) with the aim of obtaining enhanced anticancer effects

    A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1

    Get PDF
    (1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be upregulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-3355p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine

    Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins

    Get PDF
    Seasonal oxygen depletion (hypoxia) in coastal bottom waters can lead to the release and persistence of free sulfide (euxinia), which is highly detrimental to marine life. Although coastal hypoxia is relatively common, reports of euxinia are less frequent, which suggests that certain environmental controls can delay the onset of euxinia. However, these controls and their prevalence are poorly understood. Here we present field observations from a seasonally hypoxic marine basin (Grevelingen, The Netherlands), which suggest that the activity of cable bacteria, a recently discovered group of sulfur-oxidizing microorganisms inducing long-distance electron transport, can delay the onset of euxinia in coastal waters. Our results reveal a remarkable seasonal succession of sulfur cycling pathways, which was observed over multiple years. Cable bacteria dominate the sediment geochemistry in winter, whereas, after the summer hypoxia, Beggiatoaceae mats colonize the sediment. The specific electrogenic metabolism of cable bacteria generates a large buffer of sedimentary iron oxides before the onset of summer hypoxia, which captures free sulfide in the surface sediment, thus likely preventing the development of bottom water euxinia. As cable bacteria are present in many seasonally hypoxic systems, this euxinia-preventing firewall mechanism could be widely active, and may explain why euxinia is relatively infrequently observed in the coastal ocean
    • …
    corecore