141 research outputs found

    Compression-Responsive Photonic Crystals Based on Fluorine-Containing Polymers

    Get PDF
    Fluoropolymers represent a unique class of functional polymers due to their various interesting and important properties such as thermal stability, resistance toward chemicals, repellent behaviors, and their low refractive indices in comparison to other polymeric materials. Based on the latter optical property, fluoropolymers are particularly of interest for the preparation of photonic crystals for optical sensing application. Within the present study, photonic crystals were prepared based on core-interlayer-shell particles focusing on fluoropolymers. For particle assembly, the melt-shear organization technique was applied. The high order and refractive index contrast of the individual components of the colloidal crystal structure lead to remarkable reflection colors according to Bragg’s law of diffraction. Due to the special architecture of the particles, consisting of a soft core, a comparably hard interlayer, and again a soft shell, the resulting opal films were capable of changing their shape and domain sizes upon applied pressure, which was accompanied with a (reversible) change of the observed reflection colors as well. By the incorporation of adjustable amounts of UV cross-linking agents into the opal film and subsequent treatment with different UV irradiation times, stable and pressure-sensitive opal films were obtained. It is shown that the present strategy led to (i) pressure-sensitive opal films featuring reversibly switchable reflection colors and (ii) that opal films can be prepared, for which the written pattern—resulting from the compressed particles—could be fixed upon subsequent irradiation with UV light. The herein described novel fluoropolymer-containing photonic crystals, with their pressure-tunable reflection color, are promising candidates in the field of sensing devices and as potential candidates for anti-counterfeiting materials

    Complex 3D‐Printed Mechanochromic Materials with Iridescent Structural Colors Based on Core–Shell Particles

    Get PDF
    A scalable protocol for design and subsequent 3D-printing of polymeric coreshell-particles is reported. The particle synthesis by emulsion polymerization in starved-feed mode is used for tailoring particle architecture and composition. Control of size, mechanical properties, and chemical functionalities allow to achieve the specific requirement profile for subsequent extrusion-based additive manufacturing. The core-shell particles consist of hard polystyrene cores and a comparably soft polyalkylacrylate-based shell. Size and monodispersity, as well as core-to-shell ratio, are determined by means of dynamic light scattering and transmission electron microscopy. Thermal and rheological properties are investigated by means of dynamic scanning calorimetry and thermogravimetric analysis as well as oscillation and capillary rheometry. During 3D-printing, the monodisperse particles self-assemble into an ordered close packed lattice structure, leading to visible reflection colors according to Bragg’s law of diffraction. Distinct and angle-dependent reflection colors are recorded via UV-vis spectroscopy. As the structural color depends, inter alia, on the underlying particle sizes, resulting colors are easily tunable by adjusting the applied synthesis parameters. Under mechanical deformation, the color changes due to controlled lattice deformation, which enables mechanochromic sensing with the printed objects. They are also promising candidates for decorative ornaments, smart optical coatings, or advanced security devices

    Cross-Linking Strategies for Fluorine-Containing Polymer Coatings for Durable Resistant Water- and Oil-Repellency

    Get PDF
    Functional coatings for application on surfaces are of growing interest. Especially in the textile industry, durable water and oil repellent finishes are of special demand for implementation in the outdoor sector, but also as safety-protection clothes against oil or chemicals. Such oil and chemical repellent textiles can be achieved by coating surfaces with fluoropolymers. As many concerns exist regarding (per)fluorinated polymers due to their high persistence and accumulation capacity in the environment, a durable and resistant coating is essential also during the washing processes of textiles. Within the present study, different strategies are examined for a durable resistant cross-linking of a novel fluoropolymer on the surface of fibers. The monomer 2-((1,1,2- trifluoro-2-(perfluoropropoxy)ethyl)thio)ethyl acrylate, whose fluorinated side-chain is degradable by treatment with ozone, was used for this purpose. The polymers were synthesized via free radical polymerization in emulsion, and different amounts of cross-linking reagents were copolymerized. The final polymer dispersions were applied to cellulose fibers and the cross-linking was induced thermally or by irradiation with UV-light. In order to investigate the cross-linking efficiency, tensile elongation studies were carried out. In addition, multiple washing processes of the fibers were performed and the polymer loss during washing, as well as the effects on oil and water repellency were investigated. The cross-linking strategy paves the way to a durable fluoropolymer-based functional coating and the polymers are expected to provide a promising and sustainable alternative to functional coatings

    Combining Soft Polysilazanes with Melt-Shear Organization of Core–Shell Particles: On the Road to Polymer-Templated Porous Ceramics

    Get PDF
    The preparation of ordered macroporous SiCN ceramics has attracted significant interest and is an attractive area for various applications, e.g., in the fields of catalysis, gas adsorption, or membranes. Non-oxidic ceramics, such as SiCN, own a great stability based on the covalent bonds between the containing elements, which leads to interesting properties concerning resistance and stability at high temperature. Their peculiar properties have become more and more important for a manifold of applications, like catalysis or separation processes, at high temperatures. Within this work, a feasible approach for the preparation of ordered porous materials by taking advantage of polymer-derived ceramics is presented. To gain access to free-standing films consisting of porous ceramic materials, the combination of monodisperse organic polymer-based colloids with diameters of 130 nm and 180 nm featuring a processable preceramic polymer is essential. For this purpose, the tailored design of hybrid organic/inorganic particles featuring anchoring sites for a preceramic polymer in the soft shell material is developed. Moreover, polymer-based core particles are used as sacrificial template for the generation of pores, while the preceramic shell polymer can be converted to the ceramic matrix after thermal treatment. Two different routes for the polymer particles, which can be obtained by emulsion polymerization, are followed for covalently linking the preceramic polysilazane Durazane1800 (Merck, Germany): (i) Free radical polymerization and (ii) atom transfer radical polymerization (ATRP) conditions. These hybrid hard core/soft shell particles can be processed via the so-called melt-shear organization for the one-step preparation of free-standing particle films. A major advantage of this technique is the absence of any solvent or dispersion medium, enabling the core particles to merge into ordered particle stacks based on the soft preceramic shell. Subsequent ceramization of the colloidal crystal films leads to core particle degradation and transformation into porous ceramics with ceramic yields of 18–54%

    Combining Soft Polysilazanes with Melt-Shear Organization of Core–Shell Particles: On the Road to Polymer-Templated Porous Ceramics

    Get PDF
    The preparation of ordered macroporous SiCN ceramics has attracted significant interest and is an attractive area for various applications, e.g., in the fields of catalysis, gas adsorption, or membranes. Non-oxidic ceramics, such as SiCN, own a great stability based on the covalent bonds between the containing elements, which leads to interesting properties concerning resistance and stability at high temperature. Their peculiar properties have become more and more important for a manifold of applications, like catalysis or separation processes, at high temperatures. Within this work, a feasible approach for the preparation of ordered porous materials by taking advantage of polymer-derived ceramics is presented. To gain access to free-standing films consisting of porous ceramic materials, the combination of monodisperse organic polymer-based colloids with diameters of 130 nm and 180 nm featuring a processable preceramic polymer is essential. For this purpose, the tailored design of hybrid organic/inorganic particles featuring anchoring sites for a preceramic polymer in the soft shell material is developed. Moreover, polymer-based core particles are used as sacrificial template for the generation of pores, while the preceramic shell polymer can be converted to the ceramic matrix after thermal treatment. Two different routes for the polymer particles, which can be obtained by emulsion polymerization, are followed for covalently linking the preceramic polysilazane Durazane1800 (Merck, Germany): (i) Free radical polymerization and (ii) atom transfer radical polymerization (ATRP) conditions. These hybrid hard core/soft shell particles can be processed via the so-called melt-shear organization for the one-step preparation of free-standing particle films. A major advantage of this technique is the absence of any solvent or dispersion medium, enabling the core particles to merge into ordered particle stacks based on the soft preceramic shell. Subsequent ceramization of the colloidal crystal films leads to core particle degradation and transformation into porous ceramics with ceramic yields of 18–54%
    • 

    corecore