6 research outputs found

    Synaptic frailty and mitochondrial dysfunction in familial amyotrophic lateral sclerosis

    Get PDF
    L鈥橢sclerosi Lateral Amiotr貌fica (ELA) 茅s una malaltia neurodegenerativa de la motoneurona. Totes les neurones del sistema motor es veuen afectades pel flux degeneratiu en aquesta malaltia des de l鈥檈scor莽a motora prim脿ria fins a la junta neuromuscular. Al 1993, la descoberta de mutacions en el gen SOD1 va obrir nous horitzons experimentals amb la creaci贸 dels primers rosegadors transg猫nics per aquesta malaltia. Des d鈥檃quell moment i fins a l鈥檃ctualitat la mutaci贸 m茅s estudiada en l鈥橢LA ha estat la SOD1-G93A a tot el m贸n. Els models transg猫nics per aquesta mutaci贸 de la SOD1 han revelat mecanismes essencials de la neurodegeneraci贸 en aquesta malaltia incloent l鈥檈xcitotoxicitat, la disfunci贸 proteica i la degeneraci贸 axosin脿ptica entre altres. En aquest treball hem explorat els canvis moleculars que tenen lloc als terminals-C, uns terminals molt especialitzats en les 伪-moto neurones, dels rosegadors transg猫nics SOD1-G93A. A m茅s, tamb茅 hem focalitzat la nostra atenci贸 a la relaci贸 patol貌gica que s鈥檈stableix en l鈥橢LA familiar (ELAF) entre la mutaci贸 SOD1-G93A i les mitoc貌ndries de les motoneurones. En relaci贸 als terminals C en moto neurones durant la ELAF, hem trobat canvis associats a l鈥檃parici贸 dels s铆mptomes com ara expressi贸 incrementada del factor neurotr貌fic Neuregulina-1 localitzat tamb茅 per primer cop a la cisterna subsin脿ptica dels terminals C aposats a les 伪-moto neurones. La Neuregulina-1 en aquestes estructures de reticle endoplasm脿tic va ser observada a dins de ves铆cules extracel路lulars (VEs), suggerint que l鈥檃n脿lisi de la Neuregulina-1 en VEs durant ELA 茅s especialment prometedor com a biomarcador potencial en aquesta malaltia. Aix铆 nosaltres hem desenvolupat tamb茅 un nou m猫tode per tal d鈥檃茂llar VEs, donat que aquest 茅s un pas essencial previ a l鈥檈studi de les prote茂nes associades amb aquestes estructures. El nostre m猫tode aplicat a la purificaci贸 de VEs en teixits complexos fou capa莽 de facilitar la identificaci贸 de la Neuregulina-1 en VEs provinents de teixits cl铆nics i fluids biol貌gics. En relaci贸 a les implicacions de la mitoc貌ndria en la ELA, hem trobat que la mutaci贸 SOD1-G93A estabilitza la prote茂na PINK1 a la mitoc貌ndria seguidament activant el factor nuclear NF魏B en neurones. La interacci贸 seq眉encial entre la SOD1 mutant i NF魏B crea una clara disfunci贸 en la capacitat proteol铆tica del proteosoma, el qual promou coagregaci贸 de la SOD1 mutant i el PINK1 en aquestes c猫l路lules. Aquests resultats afegeixen un substancial coneixement mecan铆stic sobre els rols de la mitoc貌ndria en els events neurodegeneratius cl脿ssics de l鈥橢LA, com ara en l鈥檃gregaci贸 de prote茂nes disfuncionals en moto neurones. Seguint el nostre estudi de l鈥檃fectaci贸 mitocondrial en la ELA, hem creat i caracteritzat un nou model de Drosophila que expressa la mutaci贸 humana SOD1-G93A exclusivament en fibres musculars tor脿ciques sota el promotor 24B. Aquest model de Drosophila transg猫nica recapitula amb 猫xit el fenotip mitocondrial pr猫viament observat de l鈥橢LA presentant importants avantatges sobretot en l鈥檈lecci贸 de nous compostos terap猫utics. En definitiva, els resultats generats en aquesta tesi proporcionen evid猫ncia experimental, extensa comprensi贸 molecular i insinuen nous horitzons terap猫utics sobre els mecanismes moleculars i els events neurodegeneratius associats a la disfunci贸 sin脿ptica i mitocondrial en l鈥橢LAF.La Esclerosis Lateral Amiotr贸fica (ELA) es una enfermedad neurodegenerativa de la motoneurona. Todas las motoneuronas se ven afectadas desde la corteza motora primaria hasta la uni贸n neuromuscular. En 1993 la descubierta de mutaciones en el gen SOD1 abri贸 nuevos l铆mites experimentales con la creaci贸n de los primeros roedores transg茅nicos para esta enfermedad. Desde ese momento y hasta la actualidad, la mutaci贸n m谩s estudiada en la ELA ha sido la mutaci贸n SOD1-G93A. Los modelos transg茅nicos de esta mutaci贸n han revelado mecanismos esenciales de la neurodegeneraci贸n en la ELA, incluyendo la excitotoxicidad, la disfunci贸n proteica y la degeneraci贸n axosin谩ptica entre otras. En este trabajo hemos explorado los cambios moleculares que tienen lugar en los terminales C, unos terminales altamente especializados de las 伪-motoneuronas, en un modelo murino de ELA con la mutaci贸n SOD1-G93A. Adem谩s, tambi茅n hemos focalizado nuestra atenci贸n sobre la relaci贸n patol贸gica que se establece en la ELA familiar (ELAF) entre la mutaci贸n SOD1-G93A y las mitocondrias. En relaci贸n a los terminales C durante la ELAF, hemos encontrado cambios asociados con la aparici贸n de s铆ntomas, como por ejemplo el incremento de la expresi贸n del factor neurotr贸fico Neuregulina-1, localizado por primera vez en la cisterna subsin谩ptica de los terminales C. La Neuregulina-1 en esas estructuras de ret铆culo endoplasm谩tico fue observada dentro de ves铆culas extracelulares (VEs), sugiriendo que el an谩lisis de la Neuregulina-1 dentro de VEs en la ELA resulta especialmente prometedor como biomarcador potencial para esta enfermedad. As铆, nosotros hemos desarrollado tambi茅n un nuevo m茅todo para purificar VEs, dado que este es un paso esencial previo al estudio de las prote铆nas asociadas con estas estructuras. Nuestro m茅todo aplicado a la purificaci贸n de VEs de tejidos complejos fue capaz de facilitar la identificaci贸n de la Neuregulina en VEs provenientes de tejidos cl铆nicos y fluidos biol贸gicos. En relaci贸n a las implicaciones de la mitocondria en la ELA, hemos encontrado que la mutaci贸n SOD1-G93A estabiliza la prote铆na PINK1 en las mitocondrias activando el factor nuclear NF魏B en neuronas. La interacci贸n secuencial entre la SOD1 mutante y el NF魏B crea una clara disfunci贸n sobre la capacidad proteol铆tica del proteosoma, la cual a su vez promueve co-agregaci贸n de la SOD1 mutante y PINK1 en estas c茅lulas. Estos resultados suman un sustancial conocimiento mecan铆stico sobre los roles de la mitocondria en eventos degenerativos cl谩sicos de la ELA, como es la agregaci贸n de prote铆nas disfuncionales en motoneuronas. Siguiendo nuestro estudio de la afectaci贸n mitocondrial en la ELA, hemos creado y caracterizado un nuevo modelo de Drosophila que expresa la mutaci贸n humana SOD1-G93A en fibras musculares tor谩cicas bajo el promotor 24B. Este modelo de Drosophila transg茅nica recapitula con 茅xito en fenotipo mitocondrial caracter铆stico de la ELA presentando importantes ventajas para la elecci贸n de nuevos compuestos terap茅uticos. En definitiva, los resultados generados en esta tesis proporcionan evidencia experimental, extensa comprensi贸n molecular y insin煤an nuevos horizontes terap茅uticos acerca de los mecanismos moleculares y eventos neurodegenerativos asociados con la disfunci贸n sin谩ptica y la disfunci贸n mitocondrial en la ELAF.Amyotrophic Lateral Sclerosis (ALS) is an orphan age-associated neurodegenerative disease. All motoneurones in ALS are affected by degenerative flow from the primary motor cortex to the neuromuscular junction. In 1993, mutations of the gene SOD1 opened new research avenues allowing for the generation of familial ALS experimental models in rodents. Since then, the FALS mutation SOD1-G93A has been extensively studied worldwide in ALS to date. Transgenic models for this SOD1 mutation have revealed essential mechanisms of neurodegeneration including excitotoxicity, proteinopathy and axosynaptic degeneration among others. In this dissertation, we explored the molecular changes that occur in C-terminals, a very specialised synapse type from 伪-motoneurones of SOD1-G93A rodents. Also, we focused on the pathological relationship between the FALS mutant SOD1-G93A and mitochondria in motoneurones. With regard to C-terminals in FALS motoneurones, we found changes that were symptomatically associated with the up-regulated expression of the neurotrophic factor Neuregulin-1 located for the first time in the subsurface system of C-boutons juxtaposed to 伪-motoneurones. Furthermore, Neuregulin-1 in these endoplasmic reticulum structures was observed inside extracellular vesicles, suggesting that analysis of Neuregulin-1 from extracellular vesicles in ALS holds promise as a potential reliable biomarker for that neurodegenerative disease. We therefore have developed a new method for isolation of extracellular vesicles, as this remains as an essential step for the study of molecules associated with these structures. Our method applied to purify extracellular vesicles from complex biological tissues was able to facilitate the identification of Neuregulin-1 in extracellular vessicles from clinical tissues and biological fluids. Regarding implications of mitochondria in ALS, we have found that the FALS mutant hSOD1-G93A stabilises PINK1 in mitochondria and subsequently activates NF魏B in neuronal cells. Sequential interaction between hSOD1 and NF魏B impairs the proteosome proteolitic function promoting co-aggregation of SOD1 and PINK1 in these cells. These results add substantial mechanistic insight on the roles of mitochondria in classical ALS-associated neurodegenerative events, including aggregation of dysfuntional proteins in motoneurones. Following our study of mitochondria affectation in ALS, we have created and characterised a novel Drosophila model that expresses human SOD1-G93A in thoracic muscles under the genetic muscular promoter 24B. Flies expressing human SOD1-G93A in thoracic muscles successfully recapitulate FALS mitochondrial phenotype with several advantages in front of the current available rodent models for this FALS mutation. Taken together, the results generated in this thesis provide experimental evidence, further molecular comprehension and promise novel therapeutic approaches to the molecular mechanisms and neurodegenerative events associated with synaptic frailty and mitochondrial disfunction in FALS

    Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis

    Get PDF
    Mitochondrial pathology is a seminal pathogenic hallmark of familial amyotrophic lateral sclerosis (FALS) which is extensively manifested by human patients and mutant SOD1G93A mammalian models. Rodents expressing human FALS-associated mutations successfully mimic several human disease features; although they are not as amenable to genetic and therapeutic compound screenings as non-mammalian models. In this study, we report a newly generated and characterized Drosophila model that expresses human SOD1G93A in muscle fibers. Presence of SOD1G93A in thoracic muscles causes mitochondrial pathology and impairs normal motor behavior in these flies. Use of this new FALS-24B-SOD1G93A fly model holds promise for better understanding of the mitochondrial affectation process in FALS and for the discovery of novel therapeutic compounds able to reverse mitochondrial dysfunction in this fatal disease

    Synaptic frailty and mitochondrial dysfunction in familial amyotrophic lateral sclerosis

    No full text
    L鈥橢sclerosi Lateral Amiotr貌fica (ELA) 茅s una malaltia neurodegenerativa de la motoneurona. Totes les neurones del sistema motor es veuen afectades pel flux degeneratiu en aquesta malaltia des de l鈥檈scor莽a motora prim脿ria fins a la junta neuromuscular. Al 1993, la descoberta de mutacions en el gen SOD1 va obrir nous horitzons experimentals amb la creaci贸 dels primers rosegadors transg猫nics per aquesta malaltia. Des d鈥檃quell moment i fins a l鈥檃ctualitat la mutaci贸 m茅s estudiada en l鈥橢LA ha estat la SOD1-G93A a tot el m贸n. Els models transg猫nics per aquesta mutaci贸 de la SOD1 han revelat mecanismes essencials de la neurodegeneraci贸 en aquesta malaltia incloent l鈥檈xcitotoxicitat, la disfunci贸 proteica i la degeneraci贸 axosin脿ptica entre altres. En aquest treball hem explorat els canvis moleculars que tenen lloc als terminals-C, uns terminals molt especialitzats en les 伪-moto neurones, dels rosegadors transg猫nics SOD1-G93A. A m茅s, tamb茅 hem focalitzat la nostra atenci贸 a la relaci贸 patol貌gica que s鈥檈stableix en l鈥橢LA familiar (ELAF) entre la mutaci贸 SOD1-G93A i les mitoc貌ndries de les motoneurones. En relaci贸 als terminals C en moto neurones durant la ELAF, hem trobat canvis associats a l鈥檃parici贸 dels s铆mptomes com ara expressi贸 incrementada del factor neurotr貌fic Neuregulina-1 localitzat tamb茅 per primer cop a la cisterna subsin脿ptica dels terminals C aposats a les 伪-moto neurones. La Neuregulina-1 en aquestes estructures de reticle endoplasm脿tic va ser observada a dins de ves铆cules extracel路lulars (VEs), suggerint que l鈥檃n脿lisi de la Neuregulina-1 en VEs durant ELA 茅s especialment prometedor com a biomarcador potencial en aquesta malaltia. Aix铆 nosaltres hem desenvolupat tamb茅 un nou m猫tode per tal d鈥檃茂llar VEs, donat que aquest 茅s un pas essencial previ a l鈥檈studi de les prote茂nes associades amb aquestes estructures. El nostre m猫tode aplicat a la purificaci贸 de VEs en teixits complexos fou capa莽 de facilitar la identificaci贸 de la Neuregulina-1 en VEs provinents de teixits cl铆nics i fluids biol貌gics. En relaci贸 a les implicacions de la mitoc貌ndria en la ELA, hem trobat que la mutaci贸 SOD1-G93A estabilitza la prote茂na PINK1 a la mitoc貌ndria seguidament activant el factor nuclear NF魏B en neurones. La interacci贸 seq眉encial entre la SOD1 mutant i NF魏B crea una clara disfunci贸 en la capacitat proteol铆tica del proteosoma, el qual promou coagregaci贸 de la SOD1 mutant i el PINK1 en aquestes c猫l路lules. Aquests resultats afegeixen un substancial coneixement mecan铆stic sobre els rols de la mitoc貌ndria en els events neurodegeneratius cl脿ssics de l鈥橢LA, com ara en l鈥檃gregaci贸 de prote茂nes disfuncionals en moto neurones. Seguint el nostre estudi de l鈥檃fectaci贸 mitocondrial en la ELA, hem creat i caracteritzat un nou model de Drosophila que expressa la mutaci贸 humana SOD1-G93A exclusivament en fibres musculars tor脿ciques sota el promotor 24B. Aquest model de Drosophila transg猫nica recapitula amb 猫xit el fenotip mitocondrial pr猫viament observat de l鈥橢LA presentant importants avantatges sobretot en l鈥檈lecci贸 de nous compostos terap猫utics. En definitiva, els resultats generats en aquesta tesi proporcionen evid猫ncia experimental, extensa comprensi贸 molecular i insinuen nous horitzons terap猫utics sobre els mecanismes moleculars i els events neurodegeneratius associats a la disfunci贸 sin脿ptica i mitocondrial en l鈥橢LAF.La Esclerosis Lateral Amiotr贸fica (ELA) es una enfermedad neurodegenerativa de la motoneurona. Todas las motoneuronas se ven afectadas desde la corteza motora primaria hasta la uni贸n neuromuscular. En 1993 la descubierta de mutaciones en el gen SOD1 abri贸 nuevos l铆mites experimentales con la creaci贸n de los primeros roedores transg茅nicos para esta enfermedad. Desde ese momento y hasta la actualidad, la mutaci贸n m谩s estudiada en la ELA ha sido la mutaci贸n SOD1-G93A. Los modelos transg茅nicos de esta mutaci贸n han revelado mecanismos esenciales de la neurodegeneraci贸n en la ELA, incluyendo la excitotoxicidad, la disfunci贸n proteica y la degeneraci贸n axosin谩ptica entre otras. En este trabajo hemos explorado los cambios moleculares que tienen lugar en los terminales C, unos terminales altamente especializados de las 伪-motoneuronas, en un modelo murino de ELA con la mutaci贸n SOD1-G93A. Adem谩s, tambi茅n hemos focalizado nuestra atenci贸n sobre la relaci贸n patol贸gica que se establece en la ELA familiar (ELAF) entre la mutaci贸n SOD1-G93A y las mitocondrias. En relaci贸n a los terminales C durante la ELAF, hemos encontrado cambios asociados con la aparici贸n de s铆ntomas, como por ejemplo el incremento de la expresi贸n del factor neurotr贸fico Neuregulina-1, localizado por primera vez en la cisterna subsin谩ptica de los terminales C. La Neuregulina-1 en esas estructuras de ret铆culo endoplasm谩tico fue observada dentro de ves铆culas extracelulares (VEs), sugiriendo que el an谩lisis de la Neuregulina-1 dentro de VEs en la ELA resulta especialmente prometedor como biomarcador potencial para esta enfermedad. As铆, nosotros hemos desarrollado tambi茅n un nuevo m茅todo para purificar VEs, dado que este es un paso esencial previo al estudio de las prote铆nas asociadas con estas estructuras. Nuestro m茅todo aplicado a la purificaci贸n de VEs de tejidos complejos fue capaz de facilitar la identificaci贸n de la Neuregulina en VEs provenientes de tejidos cl铆nicos y fluidos biol贸gicos. En relaci贸n a las implicaciones de la mitocondria en la ELA, hemos encontrado que la mutaci贸n SOD1-G93A estabiliza la prote铆na PINK1 en las mitocondrias activando el factor nuclear NF魏B en neuronas. La interacci贸n secuencial entre la SOD1 mutante y el NF魏B crea una clara disfunci贸n sobre la capacidad proteol铆tica del proteosoma, la cual a su vez promueve co-agregaci贸n de la SOD1 mutante y PINK1 en estas c茅lulas. Estos resultados suman un sustancial conocimiento mecan铆stico sobre los roles de la mitocondria en eventos degenerativos cl谩sicos de la ELA, como es la agregaci贸n de prote铆nas disfuncionales en motoneuronas. Siguiendo nuestro estudio de la afectaci贸n mitocondrial en la ELA, hemos creado y caracterizado un nuevo modelo de Drosophila que expresa la mutaci贸n humana SOD1-G93A en fibras musculares tor谩cicas bajo el promotor 24B. Este modelo de Drosophila transg茅nica recapitula con 茅xito en fenotipo mitocondrial caracter铆stico de la ELA presentando importantes ventajas para la elecci贸n de nuevos compuestos terap茅uticos. En definitiva, los resultados generados en esta tesis proporcionan evidencia experimental, extensa comprensi贸n molecular y insin煤an nuevos horizontes terap茅uticos acerca de los mecanismos moleculares y eventos neurodegenerativos asociados con la disfunci贸n sin谩ptica y la disfunci贸n mitocondrial en la ELAF.Amyotrophic Lateral Sclerosis (ALS) is an orphan age-associated neurodegenerative disease. All motoneurones in ALS are affected by degenerative flow from the primary motor cortex to the neuromuscular junction. In 1993, mutations of the gene SOD1 opened new research avenues allowing for the generation of familial ALS experimental models in rodents. Since then, the FALS mutation SOD1-G93A has been extensively studied worldwide in ALS to date. Transgenic models for this SOD1 mutation have revealed essential mechanisms of neurodegeneration including excitotoxicity, proteinopathy and axosynaptic degeneration among others. In this dissertation, we explored the molecular changes that occur in C-terminals, a very specialised synapse type from 伪-motoneurones of SOD1-G93A rodents. Also, we focused on the pathological relationship between the FALS mutant SOD1-G93A and mitochondria in motoneurones. With regard to C-terminals in FALS motoneurones, we found changes that were symptomatically associated with the up-regulated expression of the neurotrophic factor Neuregulin-1 located for the first time in the subsurface system of C-boutons juxtaposed to 伪-motoneurones. Furthermore, Neuregulin-1 in these endoplasmic reticulum structures was observed inside extracellular vesicles, suggesting that analysis of Neuregulin-1 from extracellular vesicles in ALS holds promise as a potential reliable biomarker for that neurodegenerative disease. We therefore have developed a new method for isolation of extracellular vesicles, as this remains as an essential step for the study of molecules associated with these structures. Our method applied to purify extracellular vesicles from complex biological tissues was able to facilitate the identification of Neuregulin-1 in extracellular vessicles from clinical tissues and biological fluids. Regarding implications of mitochondria in ALS, we have found that the FALS mutant hSOD1-G93A stabilises PINK1 in mitochondria and subsequently activates NF魏B in neuronal cells. Sequential interaction between hSOD1 and NF魏B impairs the proteosome proteolitic function promoting co-aggregation of SOD1 and PINK1 in these cells. These results add substantial mechanistic insight on the roles of mitochondria in classical ALS-associated neurodegenerative events, including aggregation of dysfuntional proteins in motoneurones. Following our study of mitochondria affectation in ALS, we have created and characterised a novel Drosophila model that expresses human SOD1-G93A in thoracic muscles under the genetic muscular promoter 24B. Flies expressing human SOD1-G93A in thoracic muscles successfully recapitulate FALS mitochondrial phenotype with several advantages in front of the current available rodent models for this FALS mutation. Taken together, the results generated in this thesis provide experimental evidence, further molecular comprehension and promise novel therapeutic approaches to the molecular mechanisms and neurodegenerative events associated with synaptic frailty and mitochondrial disfunction in FALS

    Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis

    No full text
    Mitochondrial pathology is a seminal pathogenic hallmark of familial amyotrophic lateral sclerosis (FALS) which is extensively manifested by human patients and mutant SOD1G93A mammalian models. Rodents expressing human FALS-associated mutations successfully mimic several human disease features; although they are not as amenable to genetic and therapeutic compound screenings as non-mammalian models. In this study, we report a newly generated and characterized Drosophila model that expresses human SOD1G93A in muscle fibers. Presence of SOD1G93A in thoracic muscles causes mitochondrial pathology and impairs normal motor behavior in these flies. Use of this new FALS-24B-SOD1G93A fly model holds promise for better understanding of the mitochondrial affectation process in FALS and for the discovery of novel therapeutic compounds able to reverse mitochondrial dysfunction in this fatal disease

    Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review

    No full text
    Imbalances of the oral microbiota and dysbiosis have traditionally been linked to theoccurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exertsrelevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparitionand progression of cardiovascular, neurodegenerative and other major human diseases. In fact,the oral microbiota are the second most diverse and largely populated microbiota of the humanbody and its relationships with systemic health, although widely explored, they still lack of properintegration. The purpose of this systematic review is thus to widely examine the implications of oralmicrobiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-dateinterpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from thetime interval January 2003鈥揂pril 2022, which after careful screening resulted in 79 studies included.The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota insystemic human diseases, and encourages further research to continue elucidating the highly relevantand still poorly understood implications of this niche microbiota in systemic health. PROSPERORegistration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.Support for this work was provided by the Ministry of Science and Innovation, Spain(PID2020-114885RB-C21), Research and Education Council of the Comunidad de Madrid, Spain(2018-T1/BIO-10633) and the National Health Institute: Instituto de Salud Carlos III (ISCIII), Spain(CP21/00096). A.S. acknowledges a grant from the Talento Program 2018 of the Comunidadde Madrid. X.G.-P. acknowledges a grant from the 2021 Miguel Servet tenure track program(CP21/00096) awarded by ISCIII (Miguel Servet Program 2021 is co-funded by European UnionFunds: Fondo Social Europeo Plus, FSE+). IRBLLEIDA and X.G.-P. are co-funded by the CERCAProgram/Generalitat de Catalunya. C.L.鈥檚 PhD is funded by the Regional Ministry of Science, Univer-sities and Innovation of the Community of Madrid and the European Social Fund for the recruitmentof predoctoral researchers (PEJD-2019-PRE/BIO-16475)

    Pulsed SILAC-based proteomic analysis unveils hypoxia- and serum starvation-induced de novo protein synthesis with PHD finger protein 14 (PHF14) as a hypoxia sensitive epigenetic regulator in cell cycle progression

    No full text
    Hypoxia is an environmental cue that is associated with multiple tumorigenic processes such as immunosuppression, angiogenesis, cancer invasion, metastasis, drug resistance, and poor clinical outcomes. When facing hypoxic stress, cells initiate several adaptive responses such as cell cycle arrest to reduce excessive oxygen consumption and co-activation of oncogenic factors. In order to identify the critical novel proteins for hypoxia responses, we used pulsed-SILAC method to trace the active cellular translation events in A431 cells. Proteomic discovery data and biochemical assays showed that cancer cells selectively activate key glycolytic enzymes and novel ER-stress markers, while protein synthesis is severely suppressed. Interestingly, deprivation of oxygen affected the expression of various epigenetic regulators such as histone demethylases and NuRD (nucleosome remodeling and deacetylase) complex in A431 cells. In addition, we identified PHF14 (the plant homeodomain finger-14) as a novel hypoxia-sensitive epigenetic regulator that plays a key role in cell cycle progress and protein synthesis. Hypoxia-mediated inhibition of PHF14 was associated with increase of key cell cycle inhibitors, p14ARF, p15INK4b, and p16INK4a, which are responsible for G1-S phase transition and decrease of AKT-mTOR-4E-BP1/pS6K signaling pathway, a master regulator of protein synthesis, in response to environmental cues. Analysis of TCGA colon cancer (n=461) and skin cancer (n=470) datasets revealed a positive correlation between PHF14 expression and protein translation initiation factors, eIF4E, eIF4B, and RPS6. Significance of PHF14 gene was further demonstrated by in vivo mouse xenograft model using PHF14 KD cell lines.Ministry of Education (MOE)National Medical Research Council (NMRC)Published versionThis study was supported by the Singapore Ministry of Education (MOE2014-T2-2-043, MOE2016-T2-2-018 and MOE2016-T3-1-003) and the National Medical Research Council of Singapore (NMRC-OF-IRG-0003-2016)
    corecore