751 research outputs found

    On the definition of temperature in FPU systems

    Get PDF
    It is usually assumed, in classical statistical mechanics, that the temperature should coincide, apart from a suitable constant factor, with the mean kinetic energy of the particles. We show that this is not the case for \FPU systems, in conditions in which energy equipartition between the modes is not attained. We find that the temperature should be rather identified with the mean value of the energy of the low frequency modes.Comment: 12 pages, 4 Figure

    FPU phenomenon for generic initial data

    Full text link
    The well known FPU phenomenon (lack of attainment of equipartition of the mode--energies at low energies, for some exceptional initial data) suggests that the FPU model does not have the mixing property at low energies. We give numerical indications that this is actually the case. This we show by computing orbits for sets of initial data of full measure, sampled out from the microcanonical ensemble by standard Montecarlo techniques. Mixing is tested by looking at the decay of the autocorrelations of the mode--energies, and it is found that the high--frequency modes have autocorrelations that tend instead to positive values. Indications are given that such a nonmixing property survives in the thermodynamic limit. It is left as an open problem whether mixing obtains within time--scales much longer than the presently available ones

    The microRNA analysis portal is a next-generation tool for exploring and analyzing miRNA-focused data in the literature.

    Get PDF
    MicroRNAs constitute a class of noncoding small RNAs involved in the posttranscriptional regulation of many biological pathways. In recent years, microRNAs have also been associated with regulation across kingdoms, demonstrating that exogenous miRNAs can function in mammals in a fashion similar to mammalian miRNAs. The growing interest in microRNAs and the increasing amount of literature and molecular and biomedical data available make it difficult to identify records of interest and keep up to date with novel findings. For these reasons, we developed the microRNA Analysis Portal (MAP). MAP selects relevant miRNA-focused articles from PubMed, links biomedical and molecular data and applies bioinformatics modules. At the time of this writing, MAP represents the richest, most complete and integrated database focused on microRNAs. MAP also integrates an updated version of MirCompare (2.0), a computational platform used for selecting plant microRNAs on the basis of their ability to regulate mammalian genes. Both MAP and MirCompare functionalities were used to predict that microRNAs from Moringa oleifera have putative roles across kingdoms by regulating human genes coding for proteins of the immune system. Starting from a selection of 94 human microRNAs, MirCompare selected 6 Moringa oleifera functional homologs. The subsequent prediction of human targets and areas of functional enrichment highlighted the central involvement of these genes in regulating immune system processes, particularly the host-virus interaction processes in hepatitis B, cytomegalovirus, papillomavirus and coronavirus. This case of use showed how MAP can help to perform complex queries without any computational background. MAP is available at http://stablab.uniroma2.it/MAP

    Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source

    Get PDF
    Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part
    • …
    corecore