533 research outputs found

    Andreev interferometer with three superconducting electrodes

    Get PDF
    We develop a quasiclassical theory of Andreev interferometers with three superconducting electrodes. Provided tunneling interface resistance between one superconducting electrode and the normal metal strongly exceeds two others, significant current sensitivity to the external magnetic flux is observed only at subgap voltages. If all barrier conductances are comparable, multiple Andreev reflection comes into play and substantial current modulation can be achieved in both subgap and overgap voltage regimes. Our analysis reveals a large variety of interesting features which can be used for performance optimization of Andreev interferometers.Comment: 9 pages, 13 figure

    Diffusion and ballistic contributions of the interaction correction to the conductivity of a two-dimensional electron gas

    Full text link
    The results of an experimental study of interaction quantum correction to the conductivity of two-dimensional electron gas in A3_3B5_5 semiconductor quantum well heterostructures are presented for a wide range of TτT\tau-parameter (Tτ0.030.8T\tau\simeq 0.03-0.8), where τ\tau is the transport relaxation time. A comprehensive analysis of the magnetic field and temperature dependences of the resistivity and the conductivity tensor components allows us to separate the ballistic and diffusion parts of the correction. It is shown that the ballistic part renormalizes in the main the electron mobility, whereas the diffusion part contributes to the diagonal and does not to the off-diagonal component of the conductivity tensor. We have experimentally found the values of the Fermi-liquid parameters describing the electron-electron contribution to the transport coefficients, which are found in a good agreement with the theoretical results.Comment: 11 pages, 11 figure

    Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures

    Full text link
    We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for RdR\sim d the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for RdR\gg d, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility 4πχ4\pi\chi becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer

    Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection

    Full text link
    We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. GAPS captures these antideuterons into a target with the subsequent formation of exotic atoms. These exotic atoms decay with the emission of X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. This signature uniquely characterizes the antideuterons. Preliminary analysis of data from a prototype GAPS in an antiproton beam at the KEK accelerator in Japan has confirmed the multi-X-ray/pion star topology and indicated X-ray yields consistent with prior expectations. Moreover our success in utilizing solid rather than gas targets represents a significant simplification over our original approach and offers potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA

    Microscopic nonequilibrium theory of double-barrier Josephson junctions

    Get PDF
    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Green's function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a non-zero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
    corecore