11 research outputs found

    Piecewise Linear and Nonlinear Window Functions for Modelling of Nanostructured Memristor Device

    Get PDF
    The present paper reports two new window functions viz. piecewise linear window function and nonlinear window function for modelling of the nanostructured memristor device. The piecewise linear window function can be used for modelling of symmetric pinched hysteresis loop in I-V plane (for digital memory applications) and the nonlinear window function can be used for modelling of nonlinear pinched hysteresis loop in I-V plane (for analog memory applications). Flexibility in the parameter selection is the main attractive feature of these window functions

    Piecewise Linear and Nonlinear Window Functions for Modelling of Nanostructured Memristor Device

    Get PDF
    The present paper reports two new window functions viz. piecewise linear window function and nonlinear window function for modelling of the nanostructured memristor device. The piecewise linear window function can be used for modelling of symmetric pinched hysteresis loop in I-V plane (for digital memory applications) and the nonlinear window function can be used for modelling of nonlinear pinched hysteresis loop in I-V plane (for analog memory applications). Flexibility in the parameter selection is the main attractive feature of these window functions

    Investigating the Temperature Effects on ZnO, TiO2, WO3 and HfO2 Based Resistive Random Access Memory (RRAM) Devices

    Get PDF
    In this paper, we report the effect of filament radius and filament resistivity on the ZnO, TiO2, WO3 and HfO2 based Resistive Random Access Memory (RRAM) devices. We resort to the thermal reaction model of RRAM for the present analysis. The results substantiate decrease in saturated temperature with increase in the radius and resistivity of filament for the investigated RRAM devices. Moreover, a sudden change in the saturated temperature at a lower value of filament radius and resistivity is observed as against the steady change at the medium and higher value of the filament radius and resistivity. Results confirm the dependence of saturated temperature on the filament size and resistivity in RRAM

    Investigating the Temperature Effects on ZnO, TiO2, WO3 and HfO2 Based Resistive Random Access Memory (RRAM) Devices

    Get PDF
    In this paper, we report the effect of filament radius and filament resistivity on the ZnO, TiO2, WO3 and HfO2 based Resistive Random Access Memory (RRAM) devices. We resort to the thermal reaction model of RRAM for the present analysis. The results substantiate decrease in saturated temperature with increase in the radius and resistivity of filament for the investigated RRAM devices. Moreover, a sudden change in the saturated temperature at a lower value of filament radius and resistivity is observed as against the steady change at the medium and higher value of the filament radius and resistivity. Results confirm the dependence of saturated temperature on the filament size and resistivity in RRAM

    Polyindole-ZnO Nanocomposite: Synthesis, Characterization and Heterogeneous Catalyst for the 3,4-Dihydropyrimidinone Synthesis under Solvent-free Conditions

    No full text
    A Polyindole-ZnO nanocomposite particle was synthesized by using a chemical oxidative polymerization method. Synthesized nanocomposite was characterized by UV-Visible, FTIR, SEM, XRD, EDAX and electrical conductivity measurements. The band at 3c3400 cm 121 and 735 cm 121 in FTIR spectra confirmed the polyindole formation. XRD spectral studies exhibits major diffraction in between 30\u201340\ub0 (2\u3b8) indicates the partial crystalline nature of the polyindole-ZnO nanocomposite. SEM image reveals agglomerated granular particulate nature with ZnO embedded in the polyindole matrix. The application of Polyindole-ZnO nanocomposite as a polymer-supported catalyst was studied for the synthesis of one pot multicomponent Biginelli condensatio

    A Novel Enhancement of Nano Structure by Organic Acid Dopants in Emulsion Polymerization of Poly(o-toluidine)

    No full text
    A simple, more facile and green approach for the synthesis of poly(o-toluidine) (POT) has been described, by using oxidative emulsion polymerization in a heterogeneous phase by using ammonium persulfate as an oxidant and organic acids as dopant, acids used such as tartaric, oxalic and citric. The effect or influence of these dopants on conductivity, morphology of the nano structure of POT and physical properties are well studied and found that it depends on the nature and type of the functional organic acid dopants. By using this synthetic approach we have obtained POT nanostructures of uniform granular morphology, with average 40\u2013100 nm particle size doped with oxalic or citric acid, whereas in tartaric acid doped POT fibrilar morphology with 40\u201360 nm size nano fibers was ascertained. These compounds were characterized by UV-Visible, FT-IR, SEM, and XRD. Electrical conductivity studies of these materials were also carried out and found increase in conductivity with citric acid and oxalic acid doped POT as compared to the tartaric acid. XRD studies showed partial crystalline nature of tartaric acid doped POT polymer as compared to others. By using this emulsion process, POT nanostructure formed with 60\u2013100 nm diameter size having high yield, conductivity, and improved solubility in organic solvents in the emeraldine salt phase of polymer (confirmed by the presence of characteristic peaks at 420 nm and 3c800\u2013850 nm). The influences of reaction conditions, e.g. monomer, acid concentration on the physico-chemical properties were also investigated
    corecore