77 research outputs found

    Late Cenozoic submarine slope failures in the southern North Sea - Evolution and controlling factors

    Get PDF
    During the Late Miocene to early Pleistocene sedimentation in the southern North Sea Basin was dominated by a westward prograding depositional system. Progradation is evidenced by a series of large-scale, westward dipping clinoforms with amplitudes of up to 400 m. The clinoforms are related to a shelf-slope-basin physiography during deposition and their development and growth reflects the basinward migration of the Late Cenozoic shelf margin through time. Numerous submarine slope failures occurred on the shelf margin during this time, recognized as kilometer-scale mass-transport deposits (MTDs). Comparatively little is known about the earliest slope failures on this prograding shelf margin, yet their role is important in developing a coherent understanding of the origins of the instability of the margin as a whole. In this study we present detailed analyses of the first MTDs occurring on this Late Cenozoic shelf margin. Based on interpretation of 2D seismic reflection profiles, borehole data and integration of new chronostratigraphic datings the development and causes of slope instabilities are reconstructed. Three MTDs are distinguished within the German part of the southern North Sea, one (MTD1) that has been displaced in the Late Tortonian and two (MTD 2/3) in the Piacenzian. MTD 1 was triggered by salt-induced seismicity, as evident from salt-related faulting of the Late Cenozoic succession in its headwall domain. Pore pressure build up due to fluid migration from deeper levels in combination with loading imposed to the basin by the prograding shelf prism are the main factors controlling the initiation of MTDs 2 and 3.Subsequent slope failures occurring during shelf progradation within the Dutch North Sea are much more frequent compared to the earliest slope failures. The development from a relatively stable shelf margin towards a margin affected by repeated slope failures coincides approximately with the intensification of Northern Hemisphere Glaciations during Pleistocene times. The development and deposition of the MTDs in the Dutch North Sea is clearly linked to climate-driven environmental changes, whereas prior to the Pleistocene failure mechanisms are preferably limited to those independent of glaciations and associated sea level changes and therefore fewer failures have occurred

    Late Cenozoic submarine slope failures in the southern North Sea - Evolution and controlling factors

    Get PDF
    During the Late Miocene to early Pleistocene sedimentation in the southern North Sea Basin was dominated by a westward prograding depositional system. Progradation is evidenced by a series of large-scale, westward dipping clinoforms with amplitudes of up to 400 m. The clinoforms are related to a shelf-slope-basin physiography during deposition and their development and growth reflects the basinward migration of the Late Cenozoic shelf margin through time. Numerous submarine slope failures occurred on the shelf margin during this time, recognized as kilometer-scale mass-transport deposits (MTDs). Comparatively little is known about the earliest slope failures on this prograding shelf margin, yet their role is important in developing a coherent understanding of the origins of the instability of the margin as a whole. In this study we present detailed analyses of the first MTDs occurring on this Late Cenozoic shelf margin. Based on interpretation of 2D seismic reflection profiles, borehole data and integration of new chronostratigraphic datings the development and causes of slope instabilities are reconstructed. Three MTDs are distinguished within the German part of the southern North Sea, one (MTD1) that has been displaced in the Late Tortonian and two (MTD 2/3) in the Piacenzian. MTD 1 was triggered by salt-induced seismicity, as evident from salt-related faulting of the Late Cenozoic succession in its headwall domain. Pore pressure build up due to fluid migration from deeper levels in combination with loading imposed to the basin by the prograding shelf prism are the main factors controlling the initiation of MTDs 2 and 3.Subsequent slope failures occurring during shelf progradation within the Dutch North Sea are much more frequent compared to the earliest slope failures. The development from a relatively stable shelf margin towards a margin affected by repeated slope failures coincides approximately with the intensification of Northern Hemisphere Glaciations during Pleistocene times. The development and deposition of the MTDs in the Dutch North Sea is clearly linked to climate-driven environmental changes, whereas prior to the Pleistocene failure mechanisms are preferably limited to those independent of glaciations and associated sea level changes and therefore fewer failures have occurred

    Planned Interdisciplinary-Geoscientific Process-Studies on a Typical East Antarctic Continental Margin Setting at the Ekström Ice Shelf (Dronning Maud Land): From Gondwana Decay to Recent Deglaciation

    Get PDF
    Recent findings of outcrops of the so-called "Explora Wedge" and overlying younger sediments below the Ekström Ice Shelf initiated discussion about discovering this area in more detail. The Ekström Ice Shelf is a characteristic ice shelf and one out of numerous small to medium scale ice shelves around East Antarctica. It is bordered by ice rises and ridges, has only a small catchment area and a slow flowing central ice stream. Nevertheless, this region is of critical importance to water-mass preconditioning in the Weddell Sea, and like other ice shelves in that area particularly susceptible to future environmental changes. We have learned about sub-ice-shelf melting and freezing processes as well as the formation of supercool water and ice platelets mostly through modelling. Observations from land-fast sea ice are still very rare. Ikaite and related inorganic carbonate precipitation, processes probably observed in the ANDRILL sediment cores, may be associated with freezing processes and brine formation in this type of environment. Hardly any measurements exist regarding oceanographic and glaciological seasonal cycles and associated processes below an ice shelf, close to its calving, or at the grounding zones. Observations and detailed spatial mapping of seafloor morphology and composition are difficult and can only be done with the aid of AUVs or ROVs diving below the ice shelf. "Deep SCINI", a ROV that can be lowered through an ice hole, discovered a school of fish hidden under 740 m of ice and 850 km away from the coast and light, living at the grounding zone of the Ross Ice Shelf (WISSARD project). It also discovered a community of sea anemones (Edwardsiella andrillae), a new species, which lives in high densities upside down on the underside of the ice shelf and is part of an unknown system of biogeochemical processes. These are two more examples for living at the edge on Planet Earth. Evidence of these biological, oceanographic and glaciological processes could have been archived in sedimentary deposits. With detailed seafloor mapping and high-resolution reflection seismic we hope to find postglacial and Holocene sediments. A sequence of more than 1000 m thick sediments has been detected lying on top of the "Explora Wedge" in an area between the ice shelf calving line and about 40 km inland below the Ekström Ice Shelf. Up to now, its age is relatively unknown but could range from Cretaceous to Pleistocene. Therefore, this area would be predestined for exploring East Antarctica\'s development from a greenhouse environment after the Gondwana breakup to a Cenozoic icehouse environment, thus enabling us to possibly reconstruct the history and variability of the East Antarctic Ice Sheet. We will present various sites for drill holes and would like to raise awareness and interest within the community of polar researchers. Due to the proximity to the Neumayer III Station, the logistics of possible future investigations will be easier and will have less of an environmental impact than if started elsewhere in Antarctica

    The Mesozoic-Cenozoic tectonic evolution of the New Siberian Islands, NE Russia

    Get PDF
    On the New Siberian Islands the rocks of the east Russian Arctic shelf are exposed and allow an assessment of the structural evolution of the region. Tectonic fabrics provide evidence of three palaeo-shortening directions (NE–SW, WNW–ESE and NNW–SSE to NNE–SSW) and one set of palaeo-extension directions revealed a NE–SW to NNE–SSW direction. The contractional deformation is most likely the expression of the Cretaceous formation of the South Anyui fold–thrust belt. The NE–SW shortening is the most prominent tectonic phase in the study area. The WNW–ESE and NNW–SSE to NNE–SSW-oriented palaeo-shortening directions are also most likely related to fold belt formation; the latter might also have resulted from a bend in the suture zone. The younger Cenozoic NE–SW to NNE–SSW extensional direction is interpreted as a consequence of rifting in the Laptev Sea

    Southeastern Arctic Ocean, seismic reflection images of cruise ark2018

    Get PDF
    In autumn 2018 a multichannel seismic reflection survey was performed in the southeastern part of the Amundsen Basin, on the Lomonosov Ridge and its transition to the Siberian Shelf. We present the new data, and a first glance at the findings, with the aim to enhance insights into the tectonic evolution, sedimentation history, and paleoceanography of the southeastern Arctic Ocean. Lines on the Lomonosov Ridge confirm the presence of 1600 m thick, undisturbed, parallel sedimentary layers. A prominent highamplitudereflector sequence within the strata can be used to directly correlate to previous seismostratigraphic models. A major aim of the expedition was the acquisition of cross lines relative to previous surveys covering the location of the upcoming IODP377 project. A 300 km long transect across the Amundsen Basin images a 3 km thick sedimentary sequence covering a rough acoustic basement. The highamplitudereflector sequence can also be traced in the basin, indicating widespread changes in tectonic and deposition conditions in the eastern Arctic Ocean. The crustal surface shows strong deformation, especially in the western part of the Basin, which can be associated with a reorganisation of tectonic plates accompanied by a significant decrease in spreading rates. A seamount, likely of a magmatic origin, was observed rising from the crust and penetrating all sedimentary layers. Dredgesampling on an outcrop at the western slope of the rise reveal a cover of consolidated sandand siltstones. Lines across the transition from the Lomonosov Ridge to the Laptev Sea Shelf image a more than 2 km thick sedimentary sequence overlying a rugged and faulted acoustic basement. At first glance, no indications of a larger transform fault can be detected, which could elucidate the tectonic relation between the ridge and the shelf. Several large mass wasting events or debris flows are indicated in the strata. An erosional channel with a sediment drift on its southern edge may provide clues to ocean current development

    Jurassic to Lower Cretaceous tectonostratigraphy of the German Central Graben, southern North Sea

    Get PDF
    The Central Graben is a Mesozoic sedimentary basin that is significantly influenced by rift and salt tectonics. Its southern part is located in the German and Dutch sectors of the North Sea. Even though studies exist on the tectonic and stratigraphic development of the Danish and Dutch Central Graben, the German Central Graben as an important link is less investigated. We aim to fill this gap and to investigate the sedimentary development from the Latest Triassic to the Early Cretaceous, the relative influence of salt and rift tectonics on subsidence and how our results fit into the existing studies of the Danish and Dutch Central Graben. Knowledge of the development of the graben and its sedimentation is critical for any possible economic use like hydrocarbon exploitation or carbon capture and storage. Therefore, we mapped nine laterally traceable horizons on 2D and 3D reflection seismic data from the Lower Jurassic to the Lower Cretaceous within the German Central Graben and adjacent Danish Salt Dome Province as well as the northern Dutch Central Graben. These horizons include the base horizons of four tectonostratigraphic mega-sequences of the southern Central Graben adopted from the current Dutch tectonostratigraphic concept. Based on the mapping results, we constructed subsidence, thickness and erosion maps of the tectonostratigraphic mega-sequences and their subdivisions. The tectonostratigraphic mega-sequences were then correlated with well logs to determine the lithology. The results show that the structural and stratigraphic architecture of the German Central Graben was consecutively dominated by either subsidence controlled by rifting, salt tectonics or by thermal uplift and subsidence. We suggest that the German Central Graben is divided by a large strike-slip fault zone, the Mid Central Graben Transverse Zone, into a northern part that geologically rather belongs to the Danish and a southern part that rather belongs to the Dutch Central Graben. We discuss how this division and the tectonics influenced the regional lithology

    Pre-site Study for Deep Geological Drilling below Ekström Ice Shelf, Sub-EIS-Obs

    Get PDF
    During the last seasons and ongoing, pre-site seismic surveys have taken place in the Ekströmisen region of Dronning Maud Land, with the primary of building a stratigraphic age framework of the under-ice-shelf sediments. These sediments are overlying the Explora Wedge, a syn- or post-rift volcanic deposit. Expected ages range from Late Mesozoic to Quaternary. From new vibroseismic profiles we will select sites for short core seafloor sampling through Hot Water Drill (HWD) holes of the oldest and of the youngest sediment sequences to confine their age time span. There is further potential for drilling deeper sediment cores with the support of international partner. Deep drilling should recover the sediments overlying the Explora Escarpment, in order to discover the nature of the Explora Wedge. We expect the overlying sediment sequences to reveal the history of polar amplification and climate changes in this part of Antarctica, the build-up of the East Antarctic Ice Sheet during past warmer climates, and its Cenozoic and future variability. Having HWD holes through the shelf ice and sampling the sea floor will provide the unique opportunity for further piggy back experiments consisting of multi-disciplinary nature. Experiments and measuring setup for oceanography, sea and ice shelf physics, geophysics, geology, hydrography, biogeochemistry could be planned to characterize the ocean-ice-sediment interactions, processes and ecosystem observations
    • 

    corecore