11 research outputs found

    Erythrocyte-mediated delivery of recombinant enzymes

    No full text
    Abstract The possibility to clone, express and purify recombinant enzymes have originated the opportunity to dispose of a virtually infinite array of proteins that could be used in the clinics to treat several inherited and acquired pathological conditions. However, the direct administration of these recombinant proteins faces some intrinsic difficulties, such as degradation by circulating proteases and/or inactivation by the patient immune system. The use of drug delivery systems may overcome these limitations. Concerning recombinant enzyme therapy, the present review will mainly focus on the exploitation of erythrocytes as a carrier system for enzymes removing potentially noxious metabolites from the circulation, either as limiting treatment strategy for auxotrophic tumours or as a detoxing approach for some intoxication type inherited metabolic disorders. Moreover, the possibility of using RBCs as a potential delivering system addressing the enzymes to the monocyte–macrophages of reticular endothelial system for the treatment of diseases associated with this cell lineage, e.g. lysosome storage diseases, will be briefly discusse

    Engineering erythrocytes for the modulation of drugs' and contrasting agents' pharmacokinetics and biodistribution

    No full text
    Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches

    A new therapy prevents intellectual disability in mouse with phenylketonuria

    No full text
    Untreated phenylketonuria (PKU) results in severe neurodevelopmental disorders, which can be partially prevented by an early and rigorous limitation of phenylalanine (Phe) intake. Enzyme substitution therapy with recombinant Anabaena variabilis Phe Ammonia Lyase (rAvPAL) proved to be effective in reducing blood Phe levels in preclinical and clinical studies of adults with PKU. Aims of present study were: a) to gather proofs of clinical efficacy of rAvPAL treatment in preventing neurological impairment in an early treated murine model of PKU; b) to test the advantages of an alternative delivering system for rAvPAL such as autologous erythrocytes. BTBR-Pahenu2−/− mice were treated from 15 to 64 post-natal days with weekly infusions of erythrocytes loaded with rAvPAL. Behavioral, neurochemical, and brain histological markers denoting untreated PKU were examined in early treated adult mice in comparison with untreated and wild type animals. rAvPAL therapy normalized blood and brain Phe; prevented cognitive developmental failure, brain depletion of serotonin, dendritic spine abnormalities, and myelin basic protein reduction. No adverse events or inactivating immune reaction were observed. In conclusion present study testifies the clinical efficacy of rAvPAL treatment in a preclinical model of PKU and the advantages of erythrocytes as carrier of the enzyme in term of frequency of the administrations and prevention of immunological reactions

    Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR

    No full text
    The present study aimed to identify the microbiota present in six species of processed edible insects produced in Thailand and marketed worldwide via the internet, namely, giant water bugs (Belostoma lutarium), black ants (Polyrhachis), winged termites (alates, Termitoidae), rhino beetles (Hyboschema contractum), mole crickets (Gryllotalpidae), and silkworm pupae (Bombyx mori). For each species, two samples of boiled, dried and salted insects were purchased. The microbial DNA was extracted from the insect samples and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing and qualitative real-time PCR assays. The microbiota of the analyzed samples were widely characterized by the presence of spore-forming bacteria mainly represented by the genera Bacillus and Clostridium. Moreover, the genera Anaerobacillus, Paenibacillus, Geobacillus, Pseudomonas, Stenotrophomonas, Massilia, Delftia, Lactobacillus, Staphylococcus, Streptococcus, Vagococcus, and Vibrio were also detected. Real-time PCR allowed for ascertainment of the absence of Coxiella burnetii, Shiga toxin-producing E. coli (STEC), and Pseudomonas aeruginosa in all samples. The results of this study confirm the importance of combining different molecular techniques to characterize the biodiversity of complex ecosystems such as edible insects. The presence of potential human pathogens suggests the need for a careful application of good manufacturing practices during insect processing. This study provides further data that will be useful in risk analyses of edible insects as a novel food source

    Detection and Virulence Characterization of Listeria monocytogenes Strains in Ready-to-Eat Products

    No full text
    The public health risk posed by Listeria monocytogenes in ready-to-eat (RTE) foods depends on the effectiveness of its control at every stage of the production process and the strain involved. Analytical methods currently in use are limited to the identification/quantification of L. monocytogenes at the species level, without distinguishing virulent from hypovirulent strains. In these products, according to EU Regulation 2073/2005, L. monocytogenes is a mandatory criterion irrespective of strain virulence level. Indeed, this species encompasses a diversity of strains with various pathogenic potential, reflecting genetic heterogeneity of the species itself. Thus, the detection of specific L. monocytogenes virulence genes can be considered an important target in laboratory food analysis to assign different risk levels to foods contaminated by strains carrying different genes. In 2015–2016, a severe invasive listeriosis outbreak occurred in central Italy, leading to the intensification of routine surveillance and strain characterization for virulence genetic markers. A new multiplex real-time polymerase chain reaction targeting main virulence genes has been developed and validated against the enzyme-linked fluorescent assay (ELFA) culture-based method. Results of the improved surveillance program are now reported in this study

    Widespread Multidrug Resistance of Arcobacter butzleri Isolated from Clinical and Food Sources in Central Italy

    No full text
    : The Arcobacter genus comprises a group of bacteria widely distributed in different habitats that can be spread throughout the food chain. Fluoroquinolones and aminoglycosides represent the most common antimicrobial agents used for the treatment of Arcobacter infections. However, the increasing trend of the antimicrobial resistance of this pathogen leads to treatment failures. Moreover, the test implementation and interpretation are hindered by the lack of reference protocols and standard interpretive criteria. The purpose of our study was to assess the antibiotic resistance pattern of 17 A. butzleri strains isolated in Central Italy from fresh vegetables, sushi, chicken breast, and clinical human samples to provide new and updated information about the antimicrobial resistance epidemiology of this species. Antimicrobial susceptibility testing was carried out by the European Committee on Antimicrobial Susceptibility Testing (EUCAST)'s disc diffusion method. All the strains were multidrug resistant, with 100% resistance to tetracyclines and cefotaxime (third generation cephalosporins). Some differences were noticed among the strains, according to the isolation source (clinical isolates, food of animal origin, or fresh vegetables), with a higher sensitivity to streptomycin detected only in the strains isolated from fresh vegetables. Our data, together with other epidemiological information at the national or European Union (EU) level, may contribute to developing homogeneous breakpoints. However, the high prevalence of resistance to a wide range of antimicrobial classes makes this microorganism a threat to human health and suggests that its monitoring should be considered by authorities designated for food safety

    Unveiling hákarl: A study of the microbiota of the traditional Icelandic fermented fish

    Get PDF
    Hákarl is produced by curing of the Greenland shark (Somniosus microcephalus) flesh, which before fermentation is toxic due to the high content of trimethylamine (TMA) or trimethylamine N-oxide (TMAO). Despite its long history of consumption, little knowledge is available on the microbial consortia involved in the fermentation of this fish. In the present study, a polyphasic approach based on both culturing and DNA-based techniques was adopted to gain insight into the microbial species present in ready-to-eat hákarl. To this aim, samples of ready-to-eat hákarl were subjected to viable counting on different selective growth media. The DNA directly extracted from the samples was further subjected to Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and 16S amplicon-based sequencing. Moreover, the presence of Shiga toxin-producing Escherichia coli (STEC) and Pseudomonas aeruginosa was assessed via qualitative real-time PCR assays. pH values measured in the analyzed samples ranged from between 8.07 ± 0.06 and 8.76 ± 0.00. Viable counts revealed the presence of total mesophilic aerobes, lactic acid bacteria and Pseudomonadaceae. Regarding bacteria, PCR-DGGE analysis highlighted the dominance of close relatives of Tissierella creatinophila. For amplicon sequencing, the main operational taxonomic units (OTUs) shared among the data set were Tissierella, Pseudomonas, Oceanobacillus, Abyssivirga and Lactococcus. The presence of Pseudomonas in the analyzed samples supports the hypothesis of a possible role of this microorganism on the detoxification of shark meat from TMAO or TMA during fermentation. Several minor OTUs (<1%) were also detected, including Alkalibacterium, Staphylococcus, Proteiniclasticum, Acinetobacter, Erysipelothrix, Anaerobacillus, Ochrobactrum, Listeria and Photobacterium. Analysis of the yeast and filamentous fungi community composition by PCR-DGGE revealed the presence of close relatives of Candida tropicalis, C. glabrata, C. parapsilosis, C. zeylanoides, Saccharomyces cerevisiae, Debaryomyces, Torulaspora, Yamadazyma, Sporobolomyces, Alternaria, Cladosporium tenuissimum, Moristroma quercinum and Phoma/Epicoccum, and some of these species probably play key roles in the development of the sensory qualities of the end product. Finally, qualitative real-time PCR assays revealed the absence of STEC and Pseudomonas aeruginosa in all of the analyzed samples

    Erythrocyte-mediated delivery of recombinant enzymes

    No full text
    The possibility to clone, express and purify recombinant enzymes have originated the opportunity to dispose of a virtually infinite array of proteins that could be used in the clinics to treat several inherited and acquired pathological conditions. However, the direct administration of these recombinant proteins faces some intrinsic difficulties, such as degradation by circulating proteases and/or inactivation by the patient immune system. The use of drug delivery systems may overcome these limitations. Concerning recombinant enzyme therapy, the present review will mainly focus on the exploitation of erythrocytes as a carrier system for enzymes removing potentially noxious metabolites from the circulation, either as limiting treatment strategy for auxotrophic tumours or as a detoxing approach for some intoxication type inherited metabolic disorders. Moreover, the possibility of using RBCs as a potential delivering system addressing the enzymes to the monocyte-macrophages of reticular endothelial system for the treatment of diseases associated with this cell lineage, e.g. lysosome storage diseases, will be briefly discussed
    corecore