156 research outputs found

    Cooperative answers in database systems

    Get PDF
    A major concern of researchers who seek to improve human-computer communication involves how to move beyond literal interpretations of queries to a level of responsiveness that takes the user's misconceptions, expectations, desires, and interests into consideration. At Maryland, we are investigating how to better meet a user's needs within the framework of the cooperative answering system of Gal and Minker. We have been exploring how to use semantic information about the database to formulate coherent and informative answers. The work has two main thrusts: (1) the construction of a logic formula which embodies the content of a cooperative answer; and (2) the presentation of the logic formula to the user in a natural language form. The information that is available in a deductive database system for building cooperative answers includes integrity constraints, user constraints, the search tree for answers to the query, and false presuppositions that are present in the query. The basic cooperative answering theory of Gal and Minker forms the foundation of a cooperative answering system that integrates the new construction and presentation methods. This paper provides an overview of the cooperative answering strategies used in the CARMIN cooperative answering system, an ongoing research effort at Maryland. Section 2 gives some useful background definitions. Section 3 describes techniques for collecting cooperative logical formulae. Section 4 discusses which natural language generation techniques are useful for presenting the logic formula in natural language text. Section 5 presents a diagram of the system

    DarkHorse: a method for genome-wide prediction of horizontal gene transfer

    Get PDF
    A new approach to rapid, genome-wide identification and ranking of horizontal transfer candidate proteins is presented. The method is quantitative, reproducible, and computationally undemanding. It can be combined with genomic signature and/or phylogenetic tree-building procedures to improve accuracy and efficiency. The method is also useful for retrospective assessments of horizontal transfer prediction reliability, recognizing orthologous sequences that may have been previously overlooked or unavailable. These features are demonstrated in bacterial, archaeal, and eukaryotic examples

    Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Natural antisense transcripts (NAT) are a class of endogenous coding or non-protein-coding RNAs with sequence complementarity to other transcripts. Several lines of evidence have shown that cis- and trans-NATs may participate in a broad range of gene regulatory events. Genome-wide identification of cis-NATs in human, mouse and rice has revealed their widespread occurrence in eukaryotes. However, little is known about cis-NATs in the model plant Arabidopsis thaliana. RESULTS: We developed a new computational method to predict and identify cis-encoded NATs in Arabidopsis and found 1,340 potential NAT pairs. The expression of both sense and antisense transcripts of 957 NAT pairs was confirmed using Arabidopsis full-length cDNAs and public massively parallel signature sequencing (MPSS) data. Three known or putative Arabidopsis imprinted genes have cis-antisense transcripts. Sequences and the genomic arrangement of two Arabidopsis NAT pairs are conserved in rice. CONCLUSION: We combined information from full-length cDNAs and Arabidopsis genome annotation in our NAT prediction work and reported cis-NAT pairs that could not otherwise be identified by using one of the two datasets only. Analysis of MPSS data suggested that for most Arabidopsis cis-NAT pairs, there is predominant expression of one of the two transcripts in a tissue-specific manner

    Alternative splicing of mouse transcription factors affects their DNA-binding domain architecture and is tissue specific

    Get PDF
    BACKGROUND: Analyzing proteins in the context of all available genome and transcript sequence data has the potential to reveal functional properties not accessible through protein sequence analysis alone. To analyze the impact of alternative splicing on transcription factor (TF) protein structure, we constructed a comprehensive database of splice variants in the mouse transcriptome, called MouSDB3 containing 461 TF loci. RESULTS: Our analysis revealed that 62% of these loci in MouSDB3 have variant exons, compared to 29% of all loci. These variant TF loci contain a total of 324 alternative exons, of which 23% are in-frame. When excluded, 80% of in-frame alternative exons alter the domain architecture of the protein as computed by SMART (simple modular architecture research tool). Sixty-eight % of these exons directly affect the coding regions of domains important for TF function. Seventy-five % of the domains affected are DNA-binding domains. Tissue distribution analyses of variant mouse TFs reveal that they have more alternatively spliced forms in 14 of the 18 tissues analyzed when compared to all the loci in MouSDB3. Further, TF isoforms are homogenous within a given single tissue and are heterogeneous across different tissues, indicating their tissue specificity. CONCLUSIONS: Our study provides quantitative evidence that alternative splicing preferentially adds or deletes domains important to the DNA-binding function of the TFs. Analyses described here reveal the presence of tissue-specific alternative splicing throughout the mouse transcriptome. Our findings provide significant biological insights into control of transcription and regulation of tissue-specific gene expression by alternative splicing via creation of tissue-specific TF isoforms

    A computational investigation of kinetoplastid trans-splicing

    Get PDF
    Trans-splicing is an unusual process in which two separate RNA strands are spliced together to yield a mature mRNA. We present a novel computational approach which has an overall accuracy of 82% and can predict 92% of known trans-splicing sites. We have applied our method to chromosomes 1 and 3 of Leishmania major, with high-confidence predictions for 85% and 88% of annotated genes respectively. We suggest some extensions of our method to other systems

    Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination

    Get PDF
    Standard Illumina mate-paired libraries are constructed from 3- to 5-kb DNA fragments by a blunt-end circularization. Sequencing reads that pass through the junction of the two joined ends of a 3-5-kb DNA fragment are not easy to identify and pose problems during mapping and de novo assembly. Longer read lengths increase the possibility that a read will cross the junction. To solve this problem, we developed a mate-paired protocol for use with Illumina sequencing technology that uses Cre-Lox recombination instead of blunt end circularization. In this method, a LoxP sequence is incorporated at the junction site. This sequence allows screening reads for junctions without using a reference genome. Junction reads can be trimmed or split at the junction. Moreover, the location of the LoxP sequence in the reads distinguishes mate-paired reads from spurious paired-end reads. We tested this new method by preparing and sequencing a mate-paired library with an insert size of 3 kb from Saccharomyces cerevisiae. We present an analysis of the library quality statistics and a new bio-informatics tool called DeLoxer that can be used to analyze an IlluminaCre-Lox mate-paired data set. We also demonstrate how the resulting data significantly improves a de novo assembly of the S. cerevisiae genome

    Prediction of Cyclin-Dependent Kinase Phosphorylation Substrates

    Get PDF
    Protein phosphorylation, mediated by a family of enzymes called cyclin-dependent kinases (Cdks), plays a central role in the cell-division cycle of eukaryotes. Phosphorylation by Cdks directs the cell cycle by modifying the function of regulators of key processes such as DNA replication and mitotic progression. Here, we present a novel computational procedure to predict substrates of the cyclin-dependent kinase Cdc28 (Cdk1) in the Saccharomyces cerevisiae. Currently, most computational phosphorylation site prediction procedures focus solely on local sequence characteristics. In the present procedure, we model Cdk substrates based on both local and global characteristics of the substrates. Thus, we define the local sequence motifs that represent the Cdc28 phosphorylation sites and subsequently model clustering of these motifs within the protein sequences. This restraint reflects the observation that many known Cdk substrates contain multiple clustered phosphorylation sites. The present strategy defines a subset of the proteome that is highly enriched for Cdk substrates, as validated by comparing it to a set of bona fide, published, experimentally characterized Cdk substrates which was to our knowledge, comprehensive at the time of writing. To corroborate our model, we compared its predictions with three experimentally independent Cdk proteomic datasets and found significant overlap. Finally, we directly detected in vivo phosphorylation at Cdk motifs for selected putative substrates using mass spectrometry

    Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets

    Get PDF
    BACKGROUND: A class of eukaryotic non-coding RNAs termed microRNAs (miRNAs) interact with target mRNAs by sequence complementarity to regulate their expression. The low abundance of some miRNAs and their time- and tissue-specific expression patterns make experimental miRNA identification difficult. We present here a computational method for genome-wide prediction of Arabidopsis thaliana microRNAs and their target mRNAs. This method uses characteristic features of known plant miRNAs as criteria to search for miRNAs conserved between Arabidopsis and Oryza sativa. Extensive sequence complementarity between miRNAs and their target mRNAs is used to predict miRNA-regulated Arabidopsis transcripts. RESULTS: Our prediction covered 63% of known Arabidopsis miRNAs and identified 83 new miRNAs. Evidence for the expression of 25 predicted miRNAs came from northern blots, their presence in the Arabidopsis Small RNA Project database, and massively parallel signature sequencing (MPSS) data. Putative targets functionally conserved between Arabidopsis and O. sativa were identified for most newly identified miRNAs. Independent microarray data showed that the expression levels of some mRNA targets anti-correlated with the accumulation pattern of their corresponding regulatory miRNAs. The cleavage of three target mRNAs by miRNA binding was validated in 5' RACE experiments. CONCLUSIONS: We identified new plant miRNAs conserved between Arabidopsis and O. sativa and report a wide range of transcripts as potential miRNA targets. Because MPSS data are generated from polyadenylated RNA molecules, our results suggest that at least some miRNA precursors are polyadenylated at certain stages. The broad range of putative miRNA targets indicates that miRNAs participate in the regulation of a variety of biological processes

    Special issue on data management, analysis, and mining for the life sciences

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47870/1/778_2005_Article_165.pd
    • ā€¦
    corecore