3,470 research outputs found

    Deep level transient spectroscopic study of oxygen implanted melt grown ZnO single crystal

    Get PDF
    Deep level traps in melt grown ZnO single crystal created by oxygen implantation and subsequent annealing in air were studied by deep level transient spectroscopy measurement between 80 and 300 K. The E C-0.29 eV trap (E3) was the dominant peak in the as-grown sample and no new defects were created in the as-O-implanted sample. The single peak feature of the deep level transient spectroscopy (DLTS) spectra did not change with the annealing temperature up to 750 °C, but the activation energy decreased to 0.22 eV. This was explained in terms of a thermally induced defect having a peak close to but inseparable from the original 0.29 eV peak. A systematic study on a wide range of the rate window for the DLTS measurement successfully separated the Arrhenius plot data originated from different traps. It was inferred that the E3 concentration in the samples did not change after the O-implantation. The traps at E C-0.11, E C-0.16 and E C-0.58 eV were created after annealing. The E C-0.16 eV trap was assigned to an intrinsic defect. No DLTS signal was found after the sample was annealed to 1200 °C. © 2011 IOP Publishing Ltd.postprin

    Phase structure of black branes in grand canonical ensemble

    Full text link
    This is a companion paper of our previous work [1] where we studied the thermodynamics and phase structure of asymptotically flat black pp-branes in a cavity in arbitrary dimensions DD in a canonical ensemble. In this work we study the thermodynamics and phase structure of the same in a grand canonical ensemble. Since the boundary data in two cases are different (for the grand canonical ensemble boundary potential is fixed instead of the charge as in canonical ensemble) the stability analysis and the phase structure in the two cases are quite different. In particular, we find that there exists an analog of one-variable analysis as in canonical ensemble, which gives the same stability condition as the rather complicated known (but generalized from black holes to the present case) two-variable analysis. When certain condition for the fixed potential is satisfied, the phase structure of charged black pp-branes is in some sense similar to that of the zero charge black pp-branes in canonical ensemble up to a certain temperature. The new feature in the present case is that above this temperature, unlike the zero-charge case, the stable brane phase no longer exists and `hot flat space' is the stable phase here. In the grand canonical ensemble there is an analog of Hawking-Page transition, even for the charged black pp-brane, as opposed to the canonical ensemble. Our study applies to non-dilatonic as well as dilatonic black pp-branes in DD space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded, references updated, typos corrected, published in JHEP 1105:091,201

    Phase transitions and critical behavior of black branes in canonical ensemble

    Full text link
    We study the thermodynamics and phase structure of asymptotically flat non-dilatonic as well as dilatonic black branes in a cavity in arbitrary dimensions (DD). We consider the canonical ensemble and so the charge inside the cavity and the temperature at the wall are fixed. We analyze the stability of the black brane equilibrium states and derive the phase structures. For the zero charge case we find an analog of Hawking-Page phase transition for these black branes in arbitrary dimensions. When the charge is non-zero, we find that below a critical value of the charge, the phase diagram has a line of first-order phase transition in a certain range of temperatures which ends up at a second order phase transition point (critical point) as the charge attains the critical value. We calculate the critical exponents at that critical point. Although our discussion is mainly concerned with the non-dilatonic branes, we show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action discussed, references adde

    Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke

    Get PDF
    Background Recurrent stroke is a frequent, disabling event after ischemic stroke. This study compared the efficacy and safety of two antiplatelet regimens — aspirin plus extendedrelease dipyridamole (ASA–ERDP) versus clopidogrel. Methods In this double-blind, 2-by-2 factorial trial, we randomly assigned patients to receive 25 mg of aspirin plus 200 mg of extended-release dipyridamole twice daily or to receive 75 mg of clopidogrel daily. The primary outcome was first recurrence of stroke. The secondary outcome was a composite of stroke, myocardial infarction, or death from vascular causes. Sequential statistical testing of noninferiority (margin of 1.075), followed by superiority testing, was planned. Results A total of 20,332 patients were followed for a mean of 2.5 years. Recurrent stroke occurred in 916 patients (9.0%) receiving ASA–ERDP and in 898 patients (8.8%) receiving clopidogrel (hazard ratio, 1.01; 95% confidence interval [CI], 0.92 to 1.11). The secondary outcome occurred in 1333 patients (13.1%) in each group (hazard ratio for ASA–ERDP, 0.99; 95% CI, 0.92 to 1.07). There were more major hemorrhagic events among ASA–ERDP recipients (419 [4.1%]) than among clopidogrel recipients (365 [3.6%]) (hazard ratio, 1.15; 95% CI, 1.00 to 1.32), including intracranial hemorrhage (hazard ratio, 1.42; 95% CI, 1.11 to 1.83). The net risk of recurrent stroke or major hemorrhagic event was similar in the two groups (1194 ASA–ERDP recipients [11.7%], vs. 1156 clopidogrel recipients [11.4%]; hazard ratio, 1.03; 95% CI, 0.95 to 1.11). Conclusions The trial did not meet the predefined criteria for noninferiority but showed similar rates of recurrent stroke with ASA–ERDP and with clopidogrel. There is no evidence that either of the two treatments was superior to the other in the prevention of recurrent stroke. (ClinicalTrials.gov number, NCT00153062.

    De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation

    Get PDF
    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L−1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate

    Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma

    Get PDF
    Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown. Here we use genetic and pharmacological inhibition to show that JAK1 signaling sustains the survival of ABC DLBCL cells. Whereas STAT3 contributed to the survival of ABC DLBCL cell lines, forced STAT3 activity could not protect these cells from death following JAK1 inhibition, suggesting epigenetic JAK1 action. JAK1 regulated the expression of nearly 3,000 genes in ABC DLBCL cells, and the chromatin surrounding many of these genes was modified by H3Y41-P marks that were diminished by JAK1 inhibition. These JAK1 epigenetic target genes encode important regulators of ABC DLBCL proliferation and survival, including IRF4, MYD88, and MYC. A small molecule JAK1 inhibitor cooperated with the BTK inhibitor ibrutinib in reducing IRF4 levels and acted synergistically to kill ABC DLBCL cells, suggesting that this combination should be evaluated in clinical trials.This research was supported by the Intramural Research Program of the NIH National Cancer Institute, the University of Wisconsin–Madison (UW–Madison) start-up funds, KL2 Scholar Awards UL1TR0000427 and KL2TR000428, the National Cancer Institute Grant 1R01 CA187299 (to L.R.), and the UW–Madison T32 Hematology Training Award T32 HL07899 (to A.C.D.)
    corecore